LETTRE OUVERTE Au Premier ministre François Bayrou, A la ministre de l’Agriculture Annie Genevard,
Monsieur le Premier ministre, Madame la ministre de l’Agriculture,
L’Union européenne s’apprête à modifier radicalement et sans aucune possibilité de retour en arrière notre agriculture et notre alimentation !
Sous pression des lobbys, la Commission européenne pourrait autoriser d’ici deux mois une nouvelle génération d’OGM à envahir nos champs et nos assiettes sans avoir à se plier aux mesures indispensables de prévention sanitaire et environnementale en vigueur depuis plus de vingt ans.
Cette loi, si elle est adoptée, constituerait un recul historique de nos droits et une mise en danger inédite des écosystèmes :
> il n’y aurait plus AUCUNE évaluation des risques que ces nouveaux produits pourraient faire peser sur les abeilles, l’environnement, et la santé humaine, malgré l’alerte des scientifiques et de l’ANSES, l’agence de sécurité sanitaire française, qui reconnaissent formellement l’existence de dangers potentiels pour l’environnement et notre santé ;
> il n’y aurait plus aucun étiquetage, aucune traçabilité et donc aucun moyen pour nous de savoir si les aliments que nous achetons en magasin contiennent des OGM ;
> il n’y aurait plus aucun rempart contre l’emprise des industriels de l’agrochimie sur le système agricole puisque les multinationales accapareront une part grandissante du vivant à coups de milliers de brevets et contamineront les alternatives agroécologiques, qui sont pourtant notre seul espoir face à la catastrophe écologique en cours.
Pour toutes ces raisons, la France doit s’opposer à ce texte dès maintenant.
Si nous, citoyennes et citoyens français, vous écrivons aujourd’hui, c’est parce que le rôle de la France est déterminant dans le cycle de négociations en cours au Conseil de l’Union européenne. Votre vote pourrait immédiatement mettre fin à cette folie.
C’est la seule voie possible et entendable pour protéger notre agriculture et nos agriculteurs, la biodiversité et les droits fondamentaux des citoyens.
C’est pourquoi nous, citoyens, agriculteurs, distributeurs et consommateurs, vous demandons d’adopter une position ferme lors des discussions à venir, contre toute tentative de soustraire les nouveaux OGM aux réglementations européennes existantes sur les OGM, afin de garantir la sécurité de nos aliments, la préservation de la biodiversité et notre liberté de choix.
Vous priant d’agréer, Monsieur le Premier ministre, Madame la ministre, l’expression de notre plus haute considération.
65 943 ont signé. Passons à 100 000Prénom *Nom de familleCourriel *
2 Département de génétique évolutive et de biosystème, Faculté de biologie, Université de Gdansk, Gdansk, Pologne
3 Norwich Medical School, Université d’East Anglia, Norwich, Royaume-Uni
INTRODUCTION: Les masques ont été largement mandatés lors de la récente pandémie SARS-COV-2. En particulier, l’utilisation par la population générale est associée à un risque plus élevé de manipulation incorrecte du masque et de contamination et de conséquences microbiologiques défavorables potentielles.
Méthodes: Nous avons étudié et quantifié l’accumulation bactérienne dans les masques utilisées par la population générale, en utilisant l’ARNr 16S (séquençage Sanger), la culture et l’analyse biochimique ainsi que la coloration au bengale rose. De plus, un aperçu systématique de la littérature sur la contamination du masque facial a été entreprise.
Résultats: Nous avons trouvé une charge bactérienne moyenne de 4,24 × 10 4 CFU a récupéré / masque, avec une charge maximale de 2,85 × 10 5 CFU. Ce maximum est 310 fois supérieur à la valeur limite de la contamination des surfaces de sortie du système de ventilation spécifiées par l’identification allemande VDI 6022. L’identification biochimique et moléculaire a été principalement trouvée des espèces de Staphylococcus (80%), y compris Staphylococcus aureus , ainsi que Bacillus forming. Les rapports de littérature indiquent également la contamination des masques par des opportunistes bactériens et fongiques des genres Acinetobacter, Aspergillus, Alternaria, Bacillus, Cadosporium, Candida, Escherichia, Enterobacter, Enteroccus, Klebsiella (y compris le K. PseudoMOe , STAPHYLOCCUS, MICROSPORUM, MUCOR, MUCOR, PNEUDOMONAS, STAPHYLOCH et Streptococcus . Les dénombrements bactériens augmentent linéairement avec la durée du port.
Discussion: Une utilisation prolongée peut affecter la peau et les microbiomes respiratoires, favorisant les conditions d’œil, de peau, orale et des voies respiratoires consécutives. Ces aspects soulignent le besoin urgent de recherches supplémentaires et une analyse risque-avantage en ce qui concerne l’utilisation du masque, en particulier compte tenu de leur efficacité non prouvée dans la perturbation de la transmission des virus respiratoires et de leurs conséquences sociales indésirables.
Introduction
Les masques de masque couvrant les entrées des Airways ont été largement mandatés lors de la récente pandémie SARS-COV-2, non seulement pour les travailleurs de la santé mais aussi pour la population générale ( 1 ). Les professions ayant des contacts humains fréquents ont été obligés de les porter pendant de longues périodes, tout comme les écoliers ( 1 à 6 ).
Cela soulève des préoccupations raisonnables: premièrement, car l’utilisation par la population générale est associée à un risque plus élevé de manipulation inappropriée du masque ( 7 – 11 ); Deuxièmement parce que leur efficacité contre les infections virales respiratoires n’est pas prouvée par des essais de haute qualité, qui indiquent peu ou pas d’effet ( 12 , 13 ) et troisièmement, car les masques sont supposés seulement avoir des effets positifs ( 14 – 16 ). En réalité, il existe de solides preuves que les masques posent divers risques, en particulier pour les femmes enceintes, les enfants et les adolescents, ainsi que pour les adultes plus âgés et les malades ( 14 , 16 – 19 ). Ils ont plusieurs effets défavorables manifestement, affectant la physiologie ( 14 , 16 , 19-23 16 et, plus évidemment, les ), la psychologie ( , 24 ) interactions sociales ( 25 – 35 ). Les effets sur le développement de l’enfance sont une préoccupation particulière. Ces effets indésirables ont été récemment résumés comme le syndrome d’épuisement induit par le masque ( 14 , 16 , 19 ). Fait intéressant, Spira ( 36 ) et Fögen ( 37 ) ont trouvé des taux d’infection et de mortalité SARS-COV-2 significativement plus élevés dans les cohortes portant le masque: les explications sont incertaines, mais le piégeage viral et le recyclage sont plausibles.
Une autre préoccupation, englobée au sein des MIES, concerne les conséquences microbiologiques défavorables potentielles du port de masques de visage. En raison de la création d’un micro-environnement chaud et humide ( 38 – 41 ), des bactéries, des champignons et même des virus peuvent s’accumuler des deux côtés des masques usés ( 42 – 46 ). Jusqu’à présent, ces aspects n’ont pas été évalués en profondeur. Le but de notre étude pilote était d’évaluer, de visualiser et de catégoriser la capacité générale des masques à accumuler des bactéries lorsqu’elles sont utilisées par la population générale. Ceci également en ce qui concerne une évaluation des risques, en utilisant la pire considération qui est nécessaire dans une telle approche protectrice ( 47 ). En conséquence, nous avons entrepris une exploration microbiologique avec des échantillons aléatoires de masques faciaux utilisés par les membres de la population générale, ainsi qu’une revue systématique de la littérature rapide. Cette approche holistique combinée avec l’ARNr 16S (séquençage Sanger), la culture et l’analyse biochimique ainsi que la coloration rose au bengale plus une analyse de littérature systématique n’ont pas été réalisées auparavant et est la première du genre.
Matériels et méthodes
Coloration et visualisation du Bengale Rose de la contamination
La coloration avec du sel de sodium au bengale rose a été utilisée pour détecter la contamination des masques, comme décrit précédemment ( 45 ). La figure 1 illustre la zone du masque analysée.
Figure 1
Figure 1 . Coloration du Bengale Rose des masques de visage usés. La zone analysée est marquée par le cadre rouge. Les dimensions du masque indiquées par les fabricants (175 × 95 mm) excluent les plis, qui agrandissent la surface.
Conception d’étude de masque microbiologique
Dans cet échantillon pilote, des masques sur le visage chirurgical ont été collectés en mars 2022 (pendant l’obligation pandémique) de 15 volontaires consentants aléatoires (employés du département de l’université de Gdansk âgés de 19 à 65 ans), qui les avait portés pendant des périodes de 15 à 12 h h h. . Les détails du porteur n’ont pas été enregistrés car cela ne semble pas être crucial pour notre étude pilote, qui était destinée à montrer la contamination possible des masques utilisés par la population générale de travail. Cependant, avec notre échantillon aléatoire, nous avons capturé un profil d’utilisation réaliste avec des fluctuations temporelles typiques en raison des différents utilisateurs de la population générale. Chaque masque a été stocké dans un sac en plastique séparé jusqu’à l’examen. Les masques, à l’exclusion des boucles d’oreille, ont ensuite été coupés de manière aseptique en plusieurs pièces à l’aide de ciseaux stériles dans une armoire à débit laminaire. Ces pièces ont été transférées dans des tubes contenant 15 ml de solution saline tamponnée au phosphate stérile (PBS), équilibré pendant 1 min à température ambiante, puis vortexé pendant 30 s. Trois masques chirurgicaux inutilisés, propres et propres (Shandong Kaibo Medicinal Packaging Co., Ltd., Chine) ont été traités de manière identique comme des contrôles négatifs.
Pour déterminer le nombre de bactériens, les suspensions ont été diluées à 10 et 100 fois, puis des volumes de 100 μl ont été répartis sur une gélose Columbia contenant 5% de sang de mouton (Graso Biotech, Owidz, Pologne). Les plaques ont été incubées de manière aérobie pendant une nuit à 37 ° C, puis les colonies ont été comptées. La charge bactérienne a été déterminée comme des unités de formage de colonies par ml (CFU / ml) de suspension, puis rebelle comme CFU / masque ( 38 ). Dix colonies par masque usé ont été repensées, cultivées sur du bouillon de soja tryptique (Graso Biotech, Owidz, Pologne), puis stockée dans des solutions de stock de glycérol à 15% (v / v) à −70 ° C en attendant l’identification moléculaire.
Identification des isolats par séquençage Sanger du gène d’ARNr 16S
Quarante isolats ont été identifiés par PCR et séquençage Sanger du gène d’ARNr 16S. En bref, les colonies bactériennes ont été suspendues dans 30 μL d’eau stérile et lysées dans 95 ° C, suivies d’une centrifugation à 13 000 x g pendant 2 min. Les supernées ont été utilisées pour la PCR. Les amorces étaient: Forward F27 5′-AGAGTTTGATCMTGGCTCAG-3 ′ et inverse R1492 5′-CTACGGYTACCTTGTTACGACTT-3 ′ ( 48 , 49 ). Le mélange réactionnel (25 μL) contenait: 0,1 μm de chaque amorce, 1 μL de surnageant bactérien, 0,6 U de Taq polymérase (Eurx, Gdansk, Pologne), 0,2 mM DNTPS et Taq polymérase du tampon (EURX), contenant 15 mM de MGCL 2 . Les conditions de cycle impliquaient 94 ° C pendant 5 min; 30 cycles de 94 ° C pendant 1 min, 50 ° C pendant 1 min, 72 ° C pendant 1,5 min et une étape finale à 72 ° C pendant 5 min. Le séquençage de Sanger a été effectué chez Macrogen Europe (Amsterdam, Pays-Bas) sur un analyseur d’ADN 3730xl (ThermoFisher Scientific, Waltham, MA, USA). L’amplification par PCR était telle que décrite par Monciardini et al. ( 50 ). Les données de séquençage ont été analysées par FinchTV 1.4 (Geoshipa, Inc.; Seattle, WA, USA), 1 Les extrémités des lectures séquencées ont été coupées et les assemblages résultants ont été explosés dans la base de données NCBI. Les données de séquençage sont disponibles sur fighare à https://doi.org/10.6084/m9.figshare.23614797 (consulté le 2 juillet 2023).
Caractérisation biochimique des isolats
Tous les isolats séquencés ont été repensés sur une gélose sanguin de Columbia avec 5% de sang de mouton pour l’évaluation de l’hémolyse et sur une gélose au sel de mannitol (Graso Biotech, Owidz, Pologne) pour l’identification préliminaire de Staphylococcus spp. Les staphylocoques ont été testés en outre en utilisant le kit Staph Latex (Polex ™, Pro-Lab Diagnostics, Bromborough, Royaume-Uni) pour distinguer S. aureus des autres espèces.
Recherche de littérature systématique
Nous avons systématiquement recherché des études scientifiques évaluées par des pairs, jusqu’en juin 2023, qui ont analysé quantitativement la colonisation ou la contamination du tissu, du chirurgie, du N95 et des masques similaires par bactéries et champignons. La recherche a été effectuée à l’aide de PubMed et Medline et comprenait des évaluations qualitatives et quantitatives. Les termes de recherche ont été créés en fonction des critères définis dans le schéma PICO ( 51 ). Le terme de recherche non spécifique «masque» a été omis, car il comprend également des respirateurs et des masques de ventilation anesthésiologiques. Au lieu de cela, des termes spécifiques ont été choisis: «((masque facial) ou (facemask) ou (masque chirurgical) ou (FFP1) ou (FFP2) ou (FFP3) ou (N95) ou (KF94) ou (KN95)) et ((N95) contamination microbienne) ou (bactéries) ou (champignons)). » Deux chercheurs indépendants ont identifié et sélectionné des études éligibles. Les critères d’inclusion qualitatif étaient: présentation reproductible valide de la contamination microbienne, collection compréhensible de masques évalués, crédibilité des résultats et focalisation claire. Les critères d’inclusion quantitative étaient: des méthodes appropriées et précises, une mesure valide des résultats, une sélection représentative des masques évalués et des méthodes de détection / analyse reproductibles. Les articles sélectionnés ont été vérifiés par au moins trois des auteurs actuels pour l’admissibilité potentielle. La conception de l’étude, la méthodologie, les méthodes analytiques et expérimentales ont été évaluées. Les exclusions et les raisons ont été documentées. Pour les études incluses, les données suivantes ont été extraites dans des tableaux: auteur et année, méthode et type d’étude, taille de l’échantillon et type (s) de masque, du (s) du (s) des masques, des résultats / micro-organismes examinés, du contenu et des espèces principales. Des calculs et des graphiques mathématiques simples ont été effectués avec Libre-Office Calc, un package de bureau gratuit et open-source de la Fondation Document ( 52 ).
Résultats
Abondance et types de bactéries sur des masques usés
La contamination des masques usés était visible, macroscopiquement, après coloration au Bengale rose ( figure 2 ). Ce colorant se lie aux bactéries, aux champignons et aux cellules tissulaires ainsi qu’aux débris avec l’intensité de la couleur suggérée pour refléter le degré de contamination ( 53 – 57 ).
Figure 2
Figure 2 . Exemple masque la coloration avec la rose du Bengale, se liant aux cellules tissulaires, aux débris et aux bactéries.
Sur la base de la culture, la charge bactérienne moyenne de masque facial chirurgical propre et jamais utilisé était de 0,1 × 10 3 CFU a récupéré / masque tandis que la charge moyenne arithmétique sur les masques utilisés était de 4,24 × 10 4 CFU récupéré / masque (moyenne géométrique 1,3 × 10 4 ). Les bactéries étaient les plus abondantes sur les masques usés 5 et 6, avec 1,03 × 10 5 et 2,85 × 10 5 CFU a récupéré / masque, respectivement ( tableau 1 ). L’identification biochimique et moléculaire a révélé des espèces de staphylococciques sur ces deux derniers masques, notamment S. aureus , S. Warneri et S. epidermidis ( tableau supplémentaire 2 ). Bien que la morphologie des colonies différait entre les masques, les phénotypes dominants, dans presque tous les cas, y compris les masques inutilisés, étaient les petites colonies blanches typiques de S. epidermidis et d’autres staphylocoques négatifs de la coagulase ( figure supplémentaire 1 ).
Tableau 1
Tableau 1 . L’abondance de bactéries dans les masques.
Identification des isolats par séquençage Sanger du gène d’ARNr 16S
Sur 52 colonies soumises à la PCR, nous avons choisi les 40 avec l’amplification du produit la plus efficace pour le séquençage. Les résultats de l’explosion détaillés sont présentés dans le tableau supplémentaire 1 .
La grande majorité (32, 80%) de ces 40 appartenait au genre Staphylococcus confirmant les identifications phénotypiques. Nous avons identifié quatre espèces de coagulases négatives: S. epidermidis (la plus abondante), S. warneri , S. pasteuri et S. hominis , qui appartiennent toutes à la peau humaine normale et au microbiote nasal ( tableau supplémentaire 2 ) ( 58 ). de coagulase positif Sur le masque 5, nous avons confirmé Staphylococcus ( tableau supplémentaire 2 ) avec S. aureus et S. argenteus .
Quatre autres colonies séquencées comprenaient des espèces de Bacillus formant des endospores , à savoir B. cereus, B. Thuringiensis, B. altitudinis, B. megaterium et autres ( tableaux supplémentaires 1, 2 ), qui sont des bactéries du sol ( 59 ). Parmi les quatre colonies identifiées restantes (« autres » de la figure 3 ), nous avons trouvé Sporosarcina newyorkensis , une autre tige gram-positive formant des endospores, parfois récupérée des bactériémies humaines et du lait de vache ( 60 ). La seule espèce à Gram négatif trouvée était la pseudomonad psychrobacter faecalis ( tableau supplémentaire 2 ), une espèce psychrophile associée aux fèces de pigeons ( 61 ) et rapportées également à partir d’échantillons humains ( 62 ). Nous n’avons pas isolé les streptocoques, bien que ce soit une composante majeure du microbiote oral humain. Peut-être que leurs taux de survie sur les masques sont faibles, ou leur récupération nécessite une incubation enrichie de CO 2 , et non une incubation d’air telle qu’elle est utilisée ici.
Figure 3
Figure 3 . L’abondance relative de différentes espèces bactériennes a été récupérée de masques.
Identification biochimique des isolats
Les mêmes 40 colonies ont été soumises à une identification biochimique, ce qui donne des résultats cohérents avec le séquençage. L’hémolyse a été détectée pour presque toutes ces bactéries ( tableau supplémentaire 2 ) bien que son intensité soit très variable ( tableau supplémentaire 2 ; figure supplémentaire 1 ). La plupart des bactéries ont montré une halotolérance mais seulement cinq mannitol fermentés: ces derniers ont été testés pour la coagulase et la protéine A et trois, tous à partir du masque 5, se sont avérés positifs pour les deux caractères, confirmant l’identification comme S. aureus ( tableau supplémentaire 2 ); Tous avaient une morphologie typique de l’espèce ( figure supplémentaire 1 , masque 5).
Recherche de littérature systématique
La recherche documentaire a initialement donné 1 310 résultats. Cela a été rétréci (voir le diagramme PRISMA, figure 4 ) à 14 études évaluant la contamination bactérienne et fongique des masques de tissu, chirurgicaux et N95, portés pour des périodes allant de 5 min à 3 jours. Onze études ont considéré les bactéries, cinq champignons et trois ( tableau 2 ). Quatre études étaient destinées à la population générale, tandis que 10 étaient pour les travailleurs de la santé (HCWS) ( 38 , 41 , 42 , 44 , 46 , 63 – 71 ). Six étaient destinés aux unités chirurgicales (une procédés spécifiquement de la chirurgie orthopédique) et cinq pour les pratiques dentaires ( 44 , 64 – 67 ). Seuls deux ont fourni une quantification exacte et une identification bactérienne par l’ARNr 16S; Ceux-ci ont tous deux étudié la population générale ( 38 , 63 ). Les résultats de la recherche documentaire sont résumés dans l’extraction ( tableau 2 ).
Figure 4
Figure 4 . PRISMA FLUX THART pour la recherche de littérature.
Tableau 2
Tableau 2 . Résultats microbiologiques de la recherche documentaire (contamination du masque par des bactéries et des champignons).
Discussion
Nous avons trouvé une forte contamination bactérienne des masques chirurgicaux portés par la population générale, avec jusqu’à 2,85 × 10 5 CFU / masque (moyenne 4,24 × 10 4 ).
Malheureusement, il n’y a pas de normes microbiologiques pour les masques usés contre lesquels examiner ces résultats; Dans l’UE, la seule exigence de bioburden pertinente est en 14683 pour les nouveaux masques, nécessitant ≤ 30 CFU / g. Néanmoins, comme les masques représentent un système de filtrage en amont des voies respiratoires, les valeurs limites des systèmes de ventilation sont pertinentes, notamment la norme allemande pour les surfaces de ventilation et de climatisation, VDI 6022, partie 4 ( 72 ). Cela spécifie des dénombrements de 25 à 100 CFU / 25 cm 2 comme «limite», tandis que les surfaces avec des comptes> 100 CFU / 25 cm 2 nécessitent une action ou un remplacement immédiat.
Un masque chirurgical jetable a une surface unique de CA. 230 cm 2 ( 73 ), ce qui signifie que dans notre pire cas (2,85 × 10 5 CFU / masque = 3,09 × 10 4 CFU / 25 cm 2 ), la limite supérieure de VDI 6022 a été dépassée par ca. 310 fois (moyen 46 fois) ( tableau 1 ). Les valeurs d’une étude comparable montrent un dépassement de 166 fois avec des masques de coton ( 38 ); Une autre étude, pour les agents de santé avec des masques chirurgicaux portés pour une période non spécifiée, a indiqué> 2 000 fois dépassement ( tableau 2 ) ( 44 ). Il convient d’ajouter que la charge bactérienne d’un masque se trouve directement devant les voies respiratoires alors que l’évent d’un système de climatisation se trouve généralement à plusieurs mètres.
Les exigences EN 14683 pour les nouveaux masques ont également été largement dépassées pour les articles usés ( tableau 2 ), sur la base des poids de ca. 3 g pour un masque chirurgical et 4 g pour les masques N95 / FFP2 ( 74 ); Le dépassement de cette exigence était évident même pour les masques non portés ( tableau 1 ).
La lourde contamination générale des masques usés était encore démontrable par coloration au bengale rose ( figure 2 ).
L’étude microbiologique du masque utilisée a été principalement des staphylocoques cutanés à la coagulase et des bactéries du sol formant des endospores ( Bacillus spp.) Sur utilisée ( figure 3 ). Cette prédominance des staphylocoques est conforme à d’autres études sur les masques de visage contaminés dans la population générale et les travailleurs de la santé ( 42 , 44 , 64 – 66 , 68 ). Un masque (n ° 5) a été contaminé par S. aureus , un agent pathogène bien connu et polyvalent ( figure 3 ; tableau 1 ) ( 75 – 78 ). Jusqu’à 30% de la population transporte S. aureus nasal sans symptômes ( 79 ), mais avec un risque accru d’auto-infection ( 75 ). La contamination contingente des masques peut faciliter la diffusion de S. aureus et, une infection cutanée plausiblement ( 75 ). Une association entre le transport nasal et la contamination chirurgicale et chirurgicale ainsi que le masque KN95 a été montrée précédemment pour S. aureus et même pour les non-porteurs, l’organisme a été fréquemment détecté sur les masques KN95 ( P = 0,04, test exact de Fisher) impliquant des sources exogènes de contamination (mains, environnement et gouttelettes externes contenant des flux d’air, etc.) ( 75 ). À l’appui de cela, certains auteurs notent que S. aureus contamine sur les surfaces externes et internes des masques ( 75 ).
Plusieurs auteurs ont associé l’utilisation des éruptions cutanées masques du visage, certaines impliquant S. aureus ( 80 ), y compris une nouvelle occurrence ou une exacerbation de l’acné, de la rosacée et de la dermatite séborrhoéique ( 81 ). D’autres auteurs notent l’enrichissement du microbiote des yeux normaux avec S. aureus de la respiration et des gouttelettes expirés tout en portant un masque contribuant au développement de l’inflammation des paupières (Chalazion) ( 82 , 83 ) et des infections de la cornée ( 84 ), également des infections pour les yeux plus profonds Dans le contexte des traitements (endophtalmiste après vitrectomie) ( 85 ). Il existe également des preuves que S. aureus peut augmenter la réplication du virus SARS-COV-2 de 10 à 15 fois ( 86 ), bien que cela semble plus pertinent dans le nez supérieur que sur un masque, où le virus est peu probable être reproduit.
Parmi d’autres staphylocoques, nous avons trouvé principalement S. epidermidis ( figure 3 ). D’une part, c’est un composant normal et inoffensif du microbiote cutané; De l’autre, cela peut être un danger pour les individus vulnérables immunodéprimés ( 87 – 89 ). Même chez les individus en bonne santé, les staphylocoques coagulases négatives, à grande abondance, peuvent contribuer à des affections cutanées inflammatoires telles que la dermatite atopique et l’acné vulgaris ( 58 , 90 – 92 ) avec des preuves que le port d’un masque a considérablement augmenté l’incidence de l’acné en particulier ( 93 – 101 ).
Nous avons également trouvé Bacillus spp. dans les masques, y compris les espèces qui produisent des entérotoxines ( 59 ). Bien que la croissance bactérienne des masques puisse être possible (voir ci-dessous), nous n’avons vu aucune preuve que la croissance a atteint les niveaux – typiquement> 10 6 / G – associé aux toxines dans les aliments ( 102 ). De plus, les porteurs (sauf peut-être les enfants) sont peu susceptibles de mâcher leurs masques, ce qui signifie que ces organismes peuvent être rejetés comme un risque.
Revue de la littérature sur la contamination du masque
Notre revue de la littérature a montré que tous les types de masques pertinents (chirurgicale, N95, tissu) deviennent de plus en plus contaminés par des micro-organismes pendant l’usure ( tableau 2 ; figure 5 ) ( 38 , 40 , 41 , 46 , 65 , 67 , 71 ).
Figure 5
Figure 5 . Dépendance temporelle de la contamination du masque facial pendant l’usure, en fonction des données de la littérature ( tableau 2 ). Les diagrammes indiquent l’association entre le CFU / masque et la durée d’usure, sur la base des valeurs moyennes de trois publications ( 41 , 46 , 67 ). S’ils sont inclus dans les études primaires, les écarts-types sont également montrés. Yang et al. a étudié les surfaces intérieures des masques portés par la population générale, tandis que Liu et al. et Checkchi et al. a examiné les couches extérieures de masques portés par HCW.
The literature reports contamination by bacteria of the genera Acinetobacter, Bacillus, Escherichia (specifically, E. coli , a faecal organism), Enterobacter, Enterococcus (another faecal organism), Klebsiella (including K. pneumoniae ), Micrococcus, Pseudomonas, Staphylococcus (including S. aureus ) et Streptococcus et par des champignons des genres Aspergillus, Alternaria, Candida, Cadosporium, Microsporum et Mucor ( tableau 2 ). Ces organismes sont nourris par la salive humaine, le biofilm oral nébulisé et les condensats de la respiration expirés, créant une préoccupation de biosécurité sous-estimée.
Dans la population générale, la contamination du masque interne dépasse généralement l’extérieur pour les bactéries – et peut-être, bien que cela varie selon l’étude – en outre pour les champignons ( tableau 2 ) ( 63 , 70 ). Pour les travailleurs de la santé utilisant des masques chirurgicaux, en revanche, la contamination externe dépasse la contamination interne à la fois pour les bactéries et les champignons ( p <0,001) ( 42 , 44 , 64 ) et corrélé avec la qualité de l’air microbiologique dans les domaines où ces employés travaillaient ( 42 ). Pour les masques N95, cependant, la contamination bactérienne interne apparaît plus élevée que dans les établissements de soins de santé ( 68 ). De plus, la contamination bactérienne totale des masques N95 usés a dépassé celui des masques chirurgicaux usés de manière similaire ( 68 ).
La contamination fongique est observée jusqu’à 70 à 88% des masques utilisés ( 70 , 71 ), et peut également être plus élevé à l’intérieur de l’extérieur du masque ( 70 ). Cela est surprenant, étant donné que les champignons doivent provenir de l’extérieur du masque ( 63 ).
Une comparaison du nombre de masques faciaux bactériens maximaux pour les travailleurs de la santé et la population générale, en fonction des données du tableau 2 et des temps de port / utilisation entre 5 min et 3 jours, ont montré une grande variance des données en raison de la variance des temps de port et des utilisateurs et environnementaux Facteurs. Il y a une tendance à des charges bactériennes plus élevées dans la population générale ( tableau 2 ). Ces résultats peuvent refléter une utilisation plus large et prolongée dans la population générale ( 7 , 8 ). En raison du petit nombre d’études similaires, une évaluation statistique méta-analytique n’a pas été effectuée.
Contamination du masque en face – facteurs de contribution
Les masques sont une bonne matrice pour l’accumulation microbienne et, potentiellement, la croissance, la conservation d’une température supérieure à ambient ( 103 – 107 ), l’humidité et les débris riches en nutriments ( 38 – 41 , 45 , 108 ). Outre les substances aspirées de l’extérieur, les nutriments comprennent des protéines expirées et autres débris, des cellules épithéliales exfoliées et mortes. Les gouttelettes de condensation dans le souffle expiré contiennent des métabolites, des sels, des lipides et des protéines non volatils ainsi que des bactéries et des virus intacts et dégradés ( 109 ). Cette richesse organique a été visualisée dans notre coloration aux roses du Bengale. La croissance, plutôt que la simple survie ( 38 , 39 , 41 , 45 , 108 , 110 ) des colonies bactériennes et fongiques est révélée par microscopie électronique à balayage des masques faciaux (FFP2) usée pendant plusieurs heures ( 40 ).
L’espace mort des masques N95 rigides offre un environnement humide et humide ( 103 ) avec une humidité relative de 1,5 à 2,6 fois plus élevée que l’extérieur ( 41 ) augmentant à 100% après 60 min d’utilisation ( 40 ). Cela peut créer un terrain reproducteur particulièrement attrayant pour les bactéries ( 41 ) expliquant les résultats (ci-dessus) que les masques N95 deviennent plus fortement contaminés que les masques chirurgicaux et que, dans les soins de santé, la contamination interne a dépassé externe, inversant le modèle observé pour les masques chirurgicaux ( 68 ).
Les micro-organismes piégés et incubés dans le masque peuvent être distribués au porteur, à l’environnement et à d’autres ( 16 , 111 – 113 ). Si la fuite, en raison d’un défaut ou d’un mauvais ajustement, affecte 1% de la zone du masque, l’efficacité de filtration est réduite de 50%; Si l’écart est de 2% de la zone du masque, l’efficacité est réduite de 75% ( 114 ). De plus, l’efficacité de filtration d’exhalation est significativement inférieure à l’efficacité de filtration théorique – étant respectivement de 12,4 et 46,3% pour les masques chirurgicaux et N95 ( 115 ). Dans les salles d’opération, la durée de port recommandée est limitée à quelques heures ( 116 ) car les masques chirurgicaux perdent leur efficacité au fil du temps ( 117 ). Alors qu’un masque frais a presque complètement empêché la contamination bactérienne d’une plaque d’agar maintenue à 10 à 12 cm de la bouche, cette efficacité a été mesurablement réduite dans les 30 minutes et négligeable après 2 h ( 118 ). Cette brève période d’efficacité de filtration a été encore réduite si le masque était mal ajusté ( 114 , 119 ) ou mouillé ( 119 ).
La pénétration des micro-organismes entre les couches du masque est possible, par l’action capillaire en fonction de l’humidité et des organismes spécifiques entre autres facteurs ( 120 ). À son tour, peut faciliter la formation de minuscules gouttelettes chargées d’organisme. Ceux-ci peuvent ensuite être projetés ou inhalés à chaque respiration ( 16 , 111 , 114 , 115 , 121 – 123 ). Dans ce contexte, nous soulignons la respiration à prédominance orale tout en portant un masque ( 16 , 124 ), contrairement à la respiration normale sans entrave, qui est largement via le nez, avec une plus grande filtration. La respiration orale augmente le danger d’inhaler directement les micro-organismes du masque dans les voies respiratoires plus profondes ( 125 ). Dans une étude humaine avec un aérosol radiomarqué et des diamètres de particules moyens de 4,4 μm (plage de 3,8 à 5,1 μm) ont trouvé une forte augmentation du dépôt dans les poumons (+ 37%) lors de la respiration par rapport à via le nez (75% Vs. 38%) ( 126 ). De plus, les masques – et en particulier le type N95 – la clairance muciliaire naturelle des voies respiratoires supérieures, améliorant davantage l’inhalation et la distribution des bactéries ( 127 ).
Enfin, dans le contexte, les masques faciaux contiennent des plastiques, auxquels les micro-organismes peuvent s’adsorber ( 40 , 128 ). Par conséquent, ainsi que des aérosols, les micro-particules en plastique peuvent également être libérées par des masques ( , 129-133 ) agissant comme porteurs pour la distribution des bactéries pathogènes et des champignons ( 134 ). Fait intéressant, il n’y a pratiquement pas de surface ou de matériau, pas même la peau nue, qui garantit une telle survie et une préservation à long terme de l’infectivité pour les virus comme le réseau plastique-polypropylène des masques, dans lequel les virus SARS-COV-2 sont stockés et restent contagieux jusqu’à 2 semaines, même lorsqu’ils sont séchés ( 135 ).
Contamination du masque de visage – implications cliniques potentielles
Dans une étude transversale pré-cuve sur 710 individus, le port (pour des raisons religieuses) de revêtements faciaux en tissu par les femmes saoudiennes, tirés de la population générale, a été associé à des incidents statistiquement accrus de «rhume» et d’asthme (17) ( 17 ) . Ailleurs, les changements de peau physiopathologique ( 136 ) étaient associés à la port de masques dans la population générale et les travailleurs de la santé ( 137 , 138 ). Plusieurs auteurs ont trouvé des changements dans la métabolomique cutanée, avec un risque accru de perturbation et d’inflammation des barrières, en raison de dysbioses du microbiome cutané ( 136 , 139 , 140 ) conduisant – ou favorisant le développement de la dermatite atopique et de l’acné vulgaris ( 139 ). Dans le contexte, les respirateurs N95 ont provoqué un trouble plus important que les masques chirurgicaux ( 139 ).
Les conditions oculaires ont également été associées à l’utilisation du masque ( 82 – 85 , 121 , 141 – 145 ), tandis qu’Islam et al. ont trouvé des preuves indirectes de changements dans le microbiome oral ( 146 ). Sukul et al. Changements dans le microbiome intestinal (altérations métaboliques) ( 19 ) tandis que Xiang et al. a trouvé le changement des communautés microbiennes nasales après un usage de masque prolongé ( 110 ). Enfin, les masques de visage sont mentionnés comme facteurs possibles derrière une augmentation des cas de mucormycose pendant la pandémie Covid-19, en particulier chez les individus immunodéprimés ou autrement vulnérables ( 70 , 71 , 147 ).
Pratiques pour minimiser la contamination microbienne
Il y a des considérations générales pour l’utilisation de masques faciaux dans n’importe quelle situation, ainsi que des conseils officiels sur leur utilisation appropriée ( 16 , 129 , 148 ). La minimisation de la contamination microbienne est essentielle pour assurer leur utilisation sûre, en particulier dans les soins de santé. L’OMS recommande d’éviter de toucher la surface du masque, également que les masques doivent être stockés dans un endroit propre et sec des contaminants potentiels ( 6 ). Les masques jetables doivent être supprimés après chaque utilisation et non réutilisés. La formation doit être dispensée sur la façon de mettre et de retirer des masques afin d’éviter la propagation microbienne et l’auto-infection. L’OMS recommande en outre de nettoyer les mains avant de toucher un masque (avant et après le retirer). Lorsque le masque est retiré, il doit être stocké dans un sac en plastique propre ou éliminé dans une poubelle de déchets ( 6 ).
Dans certaines situations, un bouclier facial peut être utilisé conjointement avec des masques pour fournir une barrière supplémentaire contre la contamination. Enfin, le masque doit être porté aussi court que possible, non seulement pour des raisons microbiologiques (contamination dépendante du temps du masque facial pendant le port), mais aussi pour des raisons toxicologiques et physio-métaboliques ( 14 , 129 ).
Il est évident que de grandes sections de la population, y compris les enfants, ne sont pas en mesure de suivre ces instructions complexes de manière adéquate et cohérente ( 148 ). Les alternatives aux masques doivent être recherchées et priorisées (par exemple, les systèmes de ventilation, les mesures d’hygiène et autres).
Résultats en contexte
Bien avant la pandémie, les masques faciaux sont devenus largement utilisés dans les soins de santé en médecine (notamment la chirurgie) et dans certaines industries manufacturières ( 16 , 149 – 151 ), visant à prévenir ou à minimiser l’infection ou la contamination ( 8 , 14 , 73 , 151 – 159 ). Néanmoins, leur efficacité dans les milieux de santé a été discutable bien avant 2020 ( 160 ) et leur rôle dans l’opération reste controversé ( 161 ). Compte tenu de cette histoire, il y a eu étonnamment peu de recherches sur les effets de l’utilisation à long terme des groupes professionnels. Bien que les masques filtrent les débris plus grands et les gouttelettes d’aérosols de l’air, ils comportent les risques microbiologiques décrits ici avec des dommages toxicologiques, physiologiques, psychologiques et sociologiques ( 14 , 16 , 18 – 35 , 129 , 162 ).
Les risques et les avantages d’exiger l’utilisation du masque par les populations doivent être pesés par des points de vue éthiques et médicaux ( 13 , 14 , 16 , 163 , 164 ). Pour que les masques soient exigés, les effets secondaires et les risques doivent être inférieurs au risque de ne pas porter de masque. Une évaluation de Cochrane standard en or, basée sur des essais cliniques ( 12 ) n’a trouvé aucune preuve substantielle d’efficacité dans la prévention des infections respiratoires virales et une étude récente, bien qu’avec plusieurs facteurs de confusion possible -19 Infection ( 165 ). D’un autre côté, les dommages potentiels sont nombreux ( 2 , 3 , 5 , 14 – 16 , 19 – 23 , 36 , 37 , 166 – 172 ). Ils comprennent les MIES ( 16 ), les altérations nocives de gaz sanguin ( 14 , 19 ) et les risques microbiologiques potentiels décrits ici. Les masques ne doivent pas être obligatoires pour la population générale compte tenu de cet équilibre des preuves contre leur utilisation. Ces points ont été soulevés par de nombreux scientifiques ( 14 , 16 , 17 , 36 , 37 , 129 , 166 , 173 – 175 ), y compris les principaux experts en respiration ( 176 ).
Limitations et forces
Les forces de notre article sont l’utilisation d’une méthode précise – séquençage d’ARNr 16S – pour identifier les bactéries trouvées. De plus, nous avons entrepris un aperçu de la littérature systématique et discutons des résultats des perspectives microbiologiques et cliniques holistiques. Les masques collectés dans notre étude ont été fournis par des individus aléatoires au cours de la vie quotidienne, représentant un échantillon de population générale réaliste. Coloration au Bengale de la rose visualisée de manière frappante une contamination approfondie. À la fois, notre taille limitée de l’échantillon et notre revue de littérature rapide ne doivent être considérées que comme une évaluation pilote, avec une analyse plus approfondie nécessaire. En raison du petit nombre d’études de la même conception, une méta-analyse n’a pas été réalisée. La force de cette revue est plutôt qualitative, cataloguant la vaste littérature scientifique publiée par de nombreux scientifiques dans le monde sur plusieurs décennies, démontrant des preuves expérimentales de la contamination du masque facial et de ses risques.
Conclusion
Notre étude expérimentale et la littérature publiée montrent que les masques faciaux accumulent des micro-organismes, y compris les pathobiontes ( tableaux 1 , 2 ) ( 38 , 41 , 42 , 44 , 46 , 63 – 71 , 177 ), avec une charge microbienne jusqu’à plusieurs centaines de fois supérieur à la limite de VDI 6022 standard allemande pour les surfaces des systèmes de ventilation ( 72 ) et les exigences EN 14683 pour les masques inutilisés. La contamination augmente avec le temps de port prolongé ( figure 5 ) ( 38 , 41 , 46 , 65 – 67 , 70 , 71 ) et est plus élevé pour N95 que les masques chirurgicaux ( 68 ). La plupart des contamination ont été avec des staphylocoques, y compris parfois le pathogène S. aureus .
En termes simples: (i) Le masque agit comme un piège à filtre avec des bactéries s’accumulant sur ses surfaces externes et internes; (ii) le masque agit ensuite comme un «incubateur microbiologique» à l’entrée des voies respiratoires; (iii) Les micro-organismes peuvent se développer dans le masque, nourris par des débris cutanés, du mucus et du «condensat expiré» ( 16 , 38 , 39 , 41 , 45 , 108 – 110 ). Ces organismes / agents pathogènes piégés peuvent alors être inhalés, favorisant l’infection des voies respiratoires ( 17 , 37 ) ou, lorsqu’ils sont distribués via des flux d’air ( 111 , 114 , 115 , 122 , 142 , 143 , 178 , 179 ) l’œil ( 82 – 85 , 121 , 142 ). De plus, le microbiome cutané est perturbé, conduisant ou promouvant d’autres infections et conditions allergiques ( 38 , 77 , 110 , 140 , 180 ).
Enfin, les micro-organismes accumulés peuvent être distribués par fuite ( 111 , 114 , 115 ), amplifiés par l’effet d’atomiser du masque ( 14 , 16 , 122 , 181 , 182 ).
Une analyse de Cochrane, basée uniquement sur le plus haut niveau de preuve, n’a trouvé aucune preuve que les masques réduisaient la propagation des infections virales respiratoires dans la population générale ( 12 ). D’un autre côté, leurs préjudices, au-delà des personnes étudiées ici, sont claires. Ils entravent la communication ( 32 – 34 , 94 , 183 – 188 ). Ils entravent l’apprentissage, en particulier pour les enfants ( 2 , 3 , 5 , 14 , 26 , 35 , 148 , 162 , 171 , 174 , 177 , 189 ). Ils sont associés à une hypoxémie transitoire (diminution du sang O 2 ), hypercarbia transitoire (augmentation du sang CO 2 ) ( 14 , 16 , 19 , 21 – 23 , 171 , 172 ). Ils nient le porteur de l’individualité la plus fondamentale – de montrer leur visage ( 26 , 27 , 30 – 34 , 162 , 189 ). Leur imposition à long terme est particulièrement nocive pour les membres vulnérables de la population ( 14 , 16 , 19 ). Des articles scientifiques récents indiquent des problèmes toxicologiques via l’inhalation de particules plastiques et des composés organiques cancéreux provenant du matériau du masque ( 14 , 18 , 129 , 133 ).
En bref, les effets indésirables des masques sont clairs ( 2 , 3 , 5 , 16 , 18 , 19 , 23 , 36 , 129 , 166 – 172 , 190 ), tandis que l’effet antiviral protecteur dans les scénarios réel reste douteux ( 12 – 15 , 165 , 175 , 191 – 209 ). Compte tenu de cela, ainsi que les problèmes de contamination microbiologique mis en évidence, les lois et les exigences de masquage ne répondent pas à l’éthique médicale de base de «ne pas de mal». Les lois et les mandats exigeant une utilisation du masque en conséquence n’ont pas de place valable dans la gestion pandémique respiratoire.
Énoncé de disponibilité des données
Les ensembles de données présentés dans cette étude se trouvent dans les référentiels en ligne. Les noms du référentiel / des référentiels et des numéros d’adhésion se trouvent dans l’article / matériel supplémentaire .
Contributions des auteurs
KK: Conceptualisation, conservation des données, analyse formelle, acquisition de financement, enquête, méthodologie, administration de projet, ressources, logiciels, supervision, validation, visualisation, écriture – brouillon original, écriture – revue et montage. BW: Conceptualisation, conservation des données, analyse formelle, enquête, acquisition de financement, méthodologie, ressources, logiciels, supervision, validation, visualisation, écriture – brouillon original, écriture – revue et montage. AZ: Curration des données, enquête, visualisation, écriture – brouillon original, rédaction – revue et montage. DL: Analyse formelle, enquête, supervision, validation, rédaction – Braft original, rédaction – revue et montage. AJ-K: Conceptualisation, conservation des données, analyse formelle, acquisition du financement, enquête, méthodologie, administration de projet, ressources, logiciels, supervision, validation, visualisation, écriture – brouillon original, rédaction – revue et montage.
Financement
Les auteurs déclarent que le soutien financier a été reçu pour la recherche, la paternité et / ou la publication de cet article. La publication de cet article a été partiellement financée par l’Université de Gdansk.
Remerciements
Nous tenons à remercier le Dr Jadwiga Gronczewska du Département de génétique évolutive et de biosystème de l’Université de Gdańsk, en Pologne, pour son précieux soutien technique sur ce projet. Nous remercions également le Dr Bermpohl, hygiéniste et microbiologiste, et l’ophtalmologiste et physicien Mphys, le Dr Mengedoht (Gütersloh, Allemagne), qui ont inspiré des parties du manuscrit.
Conflit d’intérêts
Les auteurs déclarent que la recherche a été menée en l’absence de relations commerciales ou financières qui pourraient être interprétées comme un conflit d’intérêts potentiel.
Note de l’éditeur
Toutes les réclamations exprimées dans cet article sont uniquement celles des auteurs et ne représentent pas nécessairement celles de leurs organisations affiliées, ou celles de l’éditeur, des éditeurs et des examinateurs. Tout produit qui peut être évalué dans cet article, ou réclamation qui peut être fait par son fabricant, n’est pas garanti ou approuvé par l’éditeur.
3. Thomson, S. Mask mandater les enfants pendant la pandémie Covid-19: une perspective internationale des droits de l’homme. Scand J Public Health . (2022) 50: 683–5. doi: 10.1177 / 14034948221081087
4. Organisation mondiale de la santé, Fonds UNC (UNICEF). Who – Conseils sur l’utilisation des masques pour les enfants de la communauté dans le contexte de Covid-19: Annex aux conseils sur l’utilisation des masques dans le contexte de Covid-19, 21 août 2020. (2020). Disponible sur: https://apps.who.int/iris/handle/10665/333919 (consulté le 7 novembre 2020).
5. Schwarz, S, Jetzky, E, Krafft, H, Maurer, T et Martin, D. Corona Enfant Studies «Co-Ki»: premiers résultats d’un registre allemande sur la bouche et le nez couvrant (masque) chez les enfants chez les enfants . Monatschr Kinderheilkd . (2021) 169: 353–65. doi: 10.1007 / s00112-021-01133-9
6. Organisation mondiale de la santé. Who – Conseils sur l’utilisation des masques dans le contexte de Covid-19: Guide provisoire, 5 juin 2020. (2020). Disponible sur: https://apps.who.int/iris/handle/10665/332293 (consulté le 7 novembre 2020).
8. Gralton, J et McLaws, ML. Protéger les agents de santé contre la grippe pandémique: N95 ou masques chirurgicaux? Crit Care Med . (2010) 38: 657–67. doi: 10.1097 / ccm.0b013e3181b9e8b3
10. Roberge, R. Facemask Utilisation par les enfants lors d’épidémies infectieuses des maladies. Biosecur Bioterror . (2011) 9: 225–31. doi: 10.1089 / bsp.2011.0009
11. Munro, APS et Hughes, RC. Les couvrages du visage ont peu d’utilité pour les jeunes enfants d’âge scolaire. Arch Dis Child . (2023) 108: 77–8. doi: 10.1136 / archdischild-2022-324809
14. Kisielinski, K, Wagner, S, Hirsch, O, Klosterhalfen, B et Prescher, A. Toxicité possible de l’exposition chronique au dioxyde de carbone associée à l’utilisation du masque facial, en particulier chez les femmes enceintes, les enfants et les adolescents – un examen de la portée. Heliyon . (2023) 9: E14117. doi: 10.1016 / j.heliyon.2023.e14117
15. Coma, E, Català, M, Méndez-Boo, L, Alonso, S, Hermosilla, E, Alvarez-Lacalle, E, et al. Décroisser le rôle de l’utilisation obligatoire du visage couvrant les masques pour le contrôle du SARS-COV-2 dans les écoles: une étude quasi-expérimentale imbriquée dans une cohorte basée sur la population en Catalogne (Espagne). Arch Dis Child . (2022) 108: 131–6. doi: 10.1136 / archdischild-2022-324172
16. Kisielinski, K, Giboni, P, Prescher, A, Klosterhalfen, B, Graessel, D, Funken, S, et al. Un masque qui couvre la bouche et le nez est-il exempt d’effets secondaires indésirables dans une utilisation quotidienne et exempts de dangers potentiels? Int J Environ Res Santé publique . (2021) 18: 4344. doi: 10.3390 / ijerph18084344
17. Ahmad, Efem, Mohammed, M, Al Rayes, AA, Al Qahtani, A, Elzubier, Ag et Suliman, Fae. L’effet du port du voile par les dames saoudiennes sur la survenue de maladies respiratoires. J asthme . (2001) 38: 423–6. doi: 10.1081 / jas-100001497
18. Ryu, H, et Kim, YH. Mesurer la quantité de composés organiques volatils nocifs inhalés à travers des masques. Ecotoxicol Environ Saf . (2023) 256: 114915. doi: 10.1016 / j.ecoenv.2023.114915
19. Sukul, P, Bartels, J, Fuchs, P, Trefz, P, Remy, R, Rührmund, L, et al. Effets des masques de visage protecteurs Covid-19 et des durées sur la physiologie hémodynamique respiratoire et les constituants de la respiration expirés. Eur respir j . (2022) 60: 2200009. doi: 10.1183 / 13993003.00009-2022
20. Al-Allaff, RGM, Al-Taee, Smy et Baker, Std. Quelques impacts immunologiques de l’utilisation du masque facial pendant la pandémie Covid-19. Pak J Biol Sci . (2021) 24: 920–7. doi: 10.3923 / pjbs.2021.920.927
21. Vakharia, RJ, Jani, I, Yadav, S et Kurian, T. pour étudier les changements aigus dans l’oxygénation du cerveau sur l’IRM chez les travailleurs de la santé à l’aide de kits de masque N95 et d’EPI pendant six heures par jour. Imagerie indienne J Radiol . (2021) 31: 893–900. doi: 10.1055 / s-0041-1741086
22. Law, CSW, LAN, PS et Glover, GH. Effet du port d’un masque facial sur le contraste en gras IRMf. Neuroimage . (2021) 229: 117752. doi: 10.1016 / j.neuroimage.2021.117752
23. Patel, S, Mohapatra, E, Suntanthy, AK, Shah, S, Abraham, J, Nanda, R, et al. Une étude pilote pour évaluer les changements dans les paramètres du gaz sanguin veineux et les biomarqueurs de l’hypoxie chez les travailleurs de la santé à l’aide de différents types de masques. Inde pulmonaire . (2023) 40: 134–42. doi: 10.4103 / Lungindia.Lungindia_343_22
24. Prousa, D. Étude sur les plaintes psychologiques et psychovegetatives avec les réglementations actuelles de protection du nez buccal. Psycharchives . (2020) 1–128. Doi: 10.23668 / psycharchives.
25. Pavlova, MA, Carbon, CC, Coello, Y, Sokolov, AA et Proverbio, Am. Éditorial: Impact de la couverture du visage sur la cognition sociale et l’interaction. Neurosci avant . (2023) 17: 1150604. doi: 10.3389 / fnins.2023.1150604
26. Carbon, CC, Held, MJ et Schütz, A. La lecture des émotions dans les visages avec et sans masques est relativement indépendante de l’exposition étendue et des variables de différence individuelles. Front Psychol . (2022) 13: 856971. doi: 10.3389 / fpsyg.2022.856971
28. Villani, C, D’Ascenzo, S, Scerrati, E, Ricciardelli, P, Nicoletti, R et Lugli, L. Le port du masque facial affecte notre attention sociale sur l’espace. Front Psychol . (2022) 13: 923558. doi: 10.3389 / fpsyg.2022.923558
29. Proverbio, AM et Cerri, A. La reconnaissance des expressions faciales sous masques chirurgicaux: la primauté de la colère. Neurosci avant . (2022) 16: 864490. doi: 10.3389 / fnins.2022.864490
30. Grundmann, F, Epstude, K et Scheibe, S. Les masques de visage réduisent la précision de la reconnaissance des émotions et la proximité perçue. Plos un . (2021) 16: E0249792. doi: 10.1371 / journal.pone.0249792
31. Mathis, L. Les effets des masques du visage sur l’interprétation des émotions chez les individus socialement anxieux. Grad Stud J Psychol . (2023) 20: 88–98. doi: 10.52214 / gsjp.v20i1.10167
32. Truong, TL, Beck, SD et Weber, A. L’impact des masques faciaux sur le rappel des phrases parlées. J ACOULT SOC AM . (2021) 149: 142–4. doi: 10.1121 / 10.0002951
33. Sönnichsen, R, Llorach Tó, G, Hochmuth, S, Hohmann, V et Radeloff, A. Comment les masques du visage interfèrent avec la compréhension de la parole des individus à halence normale: la vision fait la différence. Otol neurotol . (2022) 43: 282–8. doi: 10.1097 / mao.000000000000003458
34. McKenna, VS, Kendall, CL, Patel, Th, Howell, RJ et Gustin, RL. Impact des masques faciaux sur l’acoustique de la parole et l’effort vocal chez les professionnels de la santé. Laryngoscope . (2022) 132: 391–7. doi: 10.1002 / lary.29763
37. Fögen, Z. L’effet Foegen: un mécanisme par lequel les masques facilitantes contribuent au taux de mortalité de la cas Covid-19. Médecine (Baltimore) . (2022) 101: E28924. doi: 10.1097 / md.0000000000028924
38. Delanghe, L, Cauwenberghs, E, Spacova, I, de Boeck, I, Van Beeck, W, Pepermans, K, et al. Masques faciaux en coton et chirurgical en milieu communautaire: contamination bactérienne et hygiène du masque facial. Front Med (Lausanne) . (2021) 8: 732047. doi: 10.3389 / fmed.2021.732047
40. Buzzin, A, Domenech-Gil, G, Fraschecti, E, John, E, Pupils, D et Chapter, D. Assexing Le consécutif de l’utilisation prolongée de l’utilisation prolongée de jeturs à l’aide de massages. SCIS Rep . (2022) 12: 16796. Deux: 10.1038 / S41598-022-022-20692-9
41. Yang, Q, Li, H, Shen, S, Zhang, G, Huang, R, Feng, Y, et al. Étude de la distribution micro-climat et bactérienne dans l’espace mort des respirateurs de la face de filtrage N95. Sci Rep . (2018) 8: 17382. doi: 10.1038 / s41598-018-35693-W
42. Luksamijarulkul, P, Aiempradit, N, et Vatanasomboon, P. Contamination microbienne sur les masques chirurgicaux utilisés parmi le personnel de l’hôpital et la qualité de l’air microbien dans leurs services de travail: un hôpital à Bangkok. Oman Med j . (2014) 29: 346–50. doi: 10.5001 / OMJ.2014.92
43. Chughtai, AA, Stelzer-Braid, S, Rawlinson, W, Pontivivo, G, Wang, Q, Pan, Y, et al. Contamination par les virus respiratoires sur la surface extérieure des masques médicaux utilisés par les travailleurs de la santé à l’hôpital. BMC Infecte Dis . (2019) 19: 491. doi: 10.1186 / s12879-019-4109-x
44. Monalisa, D, Aruna, CN, Padma, KB, Manjunath, K, Hemavathy, E et Varsha, D. Contamination microbienne des masques buccaux utilisés par les étudiants post-diplômés dans une institution dentaire privée: une étude in vivue . J Dent Med Sci . (2017) 16: 61–7. doi: 10.9790 / 0853-1605046167
45. Kisielinski, K et Wojtasik, B. Adéposition à la coloration au sel de sodium du bengale rose pour la visualisation de la contamination du masque facial par les organismes vivants. Vise . (2022) 9: 218–31. doi: 10.3934 / Environsci.2022015
46. Liu, Z, Chang, Y, Chu, W, Yan, M, Mao, Y, Zhu, Z, et al. Masques chirurgicaux comme source de contamination bactérienne pendant les procédures opératoires. J orthopédique trad . (2018) 14: 57–62. doi: 10.1016 / j.jot.2018.06.002
47. Direction générale pour la santé et les consommateurs (Commission européenne) maintenant connue sous le nom de l’évaluation des risques plus pertinente pour la gestion des risques, Publications Office of the European Union, Lu. (2013). Disponible sur: https://data.europa.eu/doi/10.2772/34776 (consulté le 30 avril 2023).
48. Lane, DJ. Séquençage d’ARNr 16S / 23 dans: E Stackenbrandt et M Goodfellow, éditeurs. Techniques d’acide nucléique dans la systématique bactérienne . Chichester, Angleterre: John Wiley & Sons (1991). 115–76.
49. Turner, S, Pryer, KM, Miao, VP et Palmer, JD. Étude des relations phylogénétiques profondes entre les cyanobactéries et les plastes par une petite analyse de séquence d’ARNr de sous-unité. J Eukaryot Microbiol . (1999) 46: 327–38. doi: 10.1111 / j.1550-7408.1999.tb04612.x
50. Monciardini, P, Sosio, M, Cavaletti, L, Chiocchini, C et Donadio, S. Nouvelles amorces de PCR pour l’amplification sélective de l’ADNr 16S de différents groupes d’actinomycètes1. FEMS Microbiol Ecol . (2002) 42: 419–29. doi: 10.1111 / j.1574-6941.2002.tb01031.x
51. Huang, X, Lin, J et Demner-Fushman, D. Évaluation du PICO en tant que représentation des connaissances pour les questions cliniques. Amia annu sympaths proc . (2006) 2006: 359–63.
52. Calc | LibreOffice – Suite de bureau gratuite – basée sur OpenOffice – compatible avec Microsoft. (2023). Disponible sur: https://www.libreoffice.org/discover/calc (consulté le 17 mars 2023).
53. Feenstra, RPG et Tseng, Scg. Qu’est-ce qui est réellement taché par Rose Bengal? Arch Ophthalmol . (1992) 110: 984–93. doi: 10.1001 / archopht.1992.01080190090035
55. MANVAL, nous. Tachement des bactéries et des levures avec des colorants acides. Teinter Technol . (1941) 16: 13–9. doi: 10.3109 / 10520294109106189
56. Saha, DC. Une méthode de coloration rapide pour la détection des champignons endophytes dans le gazon et les graminées fourragères. Phytopathologie . (1988) 78: 237. doi: 10.1094 / phyto-78-237
57. Wojtasik, B, Zbawicka, M, Grabarczyk, L et Juzwa, W. Flow Cytométrique Approche pour évaluer l’impact de la libération de composés en béton hydro-technique au microbiome d’eau douce. Environ monit évaluer . (2021) 193: 698. doi: 10.1007 / s10661-021-09481-5
61. Kämpfer, P, Albrecht, A, Buczolits, S et Busse, HJ. Psychrobacter faecalis sp. nov., une nouvelle espèce d’une bioaérosol provenant de fèces de pigeons. Microbiol système Syst . (2002) 25: 31–6. doi: 10.1078 / 0723-2020-00099
62. Deschaght, P, Janssens, M, Vaneechouttte, M et Wauters, G. Psychrobacter Les isolats d’origine humaine, autres que Psychrobacter phénylpyruvicus , sont principalement psychrobacter faecalis et psychrobacter pulmonis , avec une description modifiée de P. faecalis . Int J Syst Evol Microbiol . (2012) 62: 671–4. doi: 10.1099 / ijs.0.032631-0
63. Park, Am, Khadka, S, Sato, F, Omura, S, Fujita, M, Hashwaki, K, et al. Isolement bactérien et fongique des masques faciaux sous la pandémie Covid-19. scientifiques Scientifiques (2022) 12: 1 Doi: 10.1038 / s41598-022-15409-x
64. Sachdev, R, Garg, K, Singh, G et Mehrotra, V. La sauvegarde est-elle compromise? Masque en bouche chirurgical hébergeant des micro-organismes dangereux dans la pratique dentaire. J Family Med Prim Care . (2020) 9: 759–63. doi: 10.4103 / jfmpc.jfmpc_1039_19
65. Gund, MP, Boros, G, Hannig, M, Thieme-Ruffing, S, Gärtner, B, Rohrer, Tr, et al. Contamination bactérienne de la peau du front et du masque chirurgical dans le traitement dentaire produisant des aérosols. J Oral Microbiol . (2021) 13: 1978731. doi: 10.1080 / 20002297.2021.1978731
66. Gund, MP, Naim, J, Hannig, M, Halfmann, A, Gärtner, B, Boros, G, et al. Le CHX et un bouclier facial ne peuvent pas empêcher la contamination des masques chirurgicaux. Front Med (Lausanne) . (2022) 9: 896308. doi: 10.3389 / fmed.2022.896308
67. Checkchi, V, Montevecchi, M, Valeriani, L et Checchi, L. Variation Bioburden des respirateurs de la pièce du visage filtrant au fil du temps: une étude préliminaire. Matériaux . (2022) 15: 8790. doi: 10.3390 / ma15248790
68. Yousefimashouf, M, Yousefimashouf, R, Alikhani, MS, Hashemi, H, Karami, P, Rahimi, Z, et al. Évaluation de la contamination bactérienne des masques faciaux portés par le personnel dans un centre de patients hospitalisés covid 19: une étude transversale. Nouveaux microbes Nouvelles infects . (2023) 52: 101090. doi: 10.1016 / j.nmni.2023.101090
69. Nightingale, M, Mody, M, Rickard, AH et Cassone, M. Contamination bactérienne sur les masques de visage utilisés chez les soins de santé des maisons de soins infirmiers. Antimicrob Steward Healthc Epidemiol . (2023) 3: E54. doi: 10.1017 / ash.2023.130
70. Keri, VC, Kumar, A, Singh, G, Mandal, A, Ali, H, Ranjan, P, et al. Étude pilote sur le fardeau de la contamination fongique dans les masques faciaux: Besoin d’une meilleure hygiène du masque à l’ère Covid-19. Infez Med . (2021) 29: 557–61. doi: 10.53854 / liim-2904-8
71. Merad, Y, Belmokhtar, Z, Hadjazi, O, Belkacemi, M, Matmour, D, Merad, Z, et al. Contamination fongique des masques médicaux chez les travailleurs médico-légaux de l’ère Covid19. Nouveaux microbes Nouvelles infects . (2023) 53: 101134. doi: 10.1016 / j.nmni.2023.101134
73. Rengasamy, S, Miller, A, Eimer, BC et Shaffer, Re. Performance de filtration des masques chirurgicaux approuvés par la FDA. J int Soc Respir Prot . (2009) 26: 54–70.
74. Fernández-Arribas, J, Moreno, T, Bartrolí, R et Eljarrat, E. Covid-19 Masques face: une nouvelle source d’exposition humaine et environnementale aux esters organophosphatés. Environ Int . (2021) 154: 106654. doi: 10.1016 / j.envint.2021.106654
75. Ostroski, P, Masiiuk, H, Kulig, P, Skoryk, A, Wcisłek, A, Jursa-Kulesza, J, et al. Les masques médicaux n’affectent pas l’équilibre acide-base, mais pourraient faciliter la transmission de Staphylococcus aureus en milieu hospitalier pendant la pandémie Covid-19. Int J Environ Res Santé publique (2023) 20: 2 Doi: 10.3390 / ijerph2
76. Sakr, A, Brégeon, F, Mège, JL, Rolain, JM et Blin, O. Staphylococcus aureus Colonisation nasale: une mise à jour sur les mécanismes, l’épidémiologie, les facteurs de risque et les infections ultérieures. Microbiol avant . (2018) 9: 2419. doi: 10.3389 / fmicb.2018.02419
77. Dietert, RR et Dietert, JM. Le superorganisme humain: utiliser des microbes pour la liberté par rapport à la peur. Appl Microbiol . (2023) 3: 883–905. doi: 10.3390 / Applmicrobiol3030061
79. Akhtar Danesh, L, Siedidi Nejad, Z, Sarmadian, H, Fooladvand, S, Van Belkum, A et Ghaznavi-Rad, E. Élimination de Staphylococcus aureus Le transport nasal chez les patients en soins intensifs abaisse les taux d’infection. Eur J Clin Microbiol Infect Dis . (2020) 39: 333–8. doi: 10.1007 / s10096-019-03729-2
80. Han, C, Shi, J, Chen, Y et Zhang, Z. Augmentation de l’évasion de l’acné causée par le port de masque de longue date pendant la pandémie Covid-19 parmi la population générale. Dermatol ther . (2020) 33: E13704. doi: 10.1111 / dth.13704
81. Bortoluzzi, P, Boneschi, V et Veraldi, S. «Masque» Tinea: une infection croissante pendant la pandémie Covid-19. Mycopathologia . (2022) 187: 141–2. doi: 10.1007 / s11046-021-00612-7
82. Silkiss, RZ, PAAP, MK et Ugradar, S. Incidence accrue de chalazion associée à l’usure du masque facial pendant la pandémie Covid-19. Am J Ophthalmol Case Rep . (2021) 22: 101032. doi: 10.1016 / j.ajoc.2021.101032
83. Akioud, W, Sabbata, S, Mozarie, Y et Oubaaz, A. Chalazion et le masque facial Usure pendant la pandémie Covid-19: Y a-t-il un lien? J Med Health Scients Eur (2023) 5: 17–9 Doi: 10.24018 / ejmed.2023.5.2.1
84. Molero-Senosiain, M, Tiew, S, Patel, A, Houben, I et Dhillon, N. Impact de l’usure du masque facial sur la kératite bactérienne. J Fr Ophtalmol . (2023) 46: E37–9. doi: 10.1016 / j.jfo.2022.04.028
85. Sakamoto, T, Terasaki, H, Yamashita, T, Shiihara, H, Funatsu, R et Uemura, A. Incidence accrue de l’endophtalmiste après vitrectomie par rapport à la porte du masque en face pendant la pandémie covide-19. Br J Ophthalmol . (2023) 107: 1472–7. doi: 10.1136 / bjophthalmol-2022-321357
86. Goncheva, MI, Gibson, RM, SHURTH, AC, Dikeakos, JD et Heinrichs, DE. L’ ISDA de la protéine Staphylococcus aureus augmente la réplication du SARS COV-2 en modulant la signalisation JAK-Stat. iscience . (2023) 26: 105975. doi: 10.1016 / j.isci.2023.105975
88. Schoenfelder, Smk, Lange, C, Eckart, M, Hennig, S, Kozytska, S et Ziebuhr, W. Succès à travers la diversité – comment Staphylococcus epidermidis établit comme un pathogène nosocomial. Int J Med Microbiol . (2010) 300: 380–6. doi: 10.1016 / j.ijmm.2010.04.011
90. Khorvash, F, Abdi, F, Kashani, HH, Naeini, FF et Nariman, T. Staphylococus aureus dans la pathogenèse de l’acné: une étude cas-témoins. N Am J Med Scients (2012) 4: 573–6 Doi: 10.4103 / 1947-2
91. Findley, K et Grice, Ea. Le microbiome cutané: l’accent mis sur les agents pathogènes et leur association avec les maladies de la peau. PHOST PATHOG . (2014) 10: E1004436. doi: 10.1371 / journal.ppat.1004436
92. Bjerre, Rd, Bandier, J, Skov, L, Engstrand, L et Johansen, Jd. Le rôle du microbiome cutané dans la dermatite atopique: une revue systématique. Br J Dermatol . (2017) 177: 1272–8. doi: 10.1111 / bjd.15390
93. Foo, CCI, Goon, ATJ, Leow, Y et Goh, C. Réactions cutanées indésirables à l’équipement de protection personnelle contre le syndrome respiratoire aigu sévère – une étude descriptive à Singapour. Contactez Derm . (2006) 55: 291–4. doi: 10.1111 / j.1600-0536.2006.00953.x
94. Rosner, E. Effets indésirables de l’utilisation prolongée du masque chez les professionnels de la santé pendant Covid-19. J Infect Dis Epidemiol . (2020) 6: 130. doi: 10.23937 / 2474-3658 / 1510130
95. Techasatian, L, Lebing, S, Uppala, R, Thaowandee, W, Chaiyarit, J, Supakunpinyo, C, et al. Les effets du masque facial sur la peau en dessous: une étude prospective pendant la pandémie Covid-19. J Prim Care Community Health . (2020) 11: 2150132720966167. doi: 10.1177 / 2150132720966167
96. Abduljabbar, M, Kalthoum, DE, Bakarman, M, Wahby Salem, I, Alsulaimani, Z, Alharbi, W, et al. La corrélation entre le port de masques du visage et les dommages cutanés chez les adultes pendant la pandémie Covid-19: une étude transversale à Djeddah, Arabie saoudite. Cureus . (2022) 14: E31521. doi: 10.7759 / Cureus.31521
98. Bakhsh, RA, Saddeeg, Sy, Basaqr, KM, Alshammrani, BM et Zimmo, Bs. Prévalence et facteurs associés de l’acné induite par le masque (Maskne) dans la population générale de la Jeddah pendant la pandémie Covid-19. Cureus . (2022) 14: E26394. doi: 10.7759 / Cureus.26394
99. Dani, A, Eseonu, A et Bibee, K. Facteurs de risque pour le développement de l’acné chez les travailleurs de la santé pendant la pandémie Covid-19. Arch Dermatol Res . (2023) 315: 1067–70. doi: 10.1007 / s00403-022-02434-Z
100. Falodun, O, Medugu, N, Sabir, L, Jibril, I, Oyakhire, N et Adekeye, A. Une étude épidémiologique sur les masques faciaux et l’acné dans une population nigériane. Plos un . (2022) 17: E0268224. doi: 10.1371 / journal.pone.0268224
102. Tallent, Sandra M., Knolhoff, Ann, Rhodehamel, E. Jeffery, Harmon, Stanley M. et Bennett, Reginald W., Bacteriological Analytical Manual (BAM); Chapitre 14: Bacillus cereus ., Fda. (1996). Disponible sur: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-14-bacillus-cenreus (consulté le 15 octobre 2023).
103. Roberge, R, Benson, S et Kim, JH. Charge thermique des respirateurs de la pièce de face filtrante N95. Ann occupe Hyg . (2012) 56: 808–14. doi: 10.1093 / annhyg / mes001
104. Roberge, RJ, Kim, JH et Benson, Sm. Absence de changements conséquents dans les réponses physiologiques, thermiques et subjectives du port d’un masque chirurgical. Respir Physiol Neurobiol . (2012) 181: 29–35. doi: 10.1016 / j.resp.2012.01.010
105. Kim, JH, Benson, SM et Roberge, RJ. Réponses pulmonaires et de la fréquence cardiaque au port de respirateurs N95 Filtrage Facepie. Am J Contrôle infecté . (2013) 41: 24–7. doi: 10.1016 / j.ajic.2012.02.037
106. Scarano, A, Inchingolo, F et Lorusso, F. Température et inconfort de la peau faciale lorsque vous portez des masques de visage protecteurs: évaluation de l’imagerie infrarouge thermique et mains en mouvement du masque. Int J Environ Res Santé publique . (2020) 17: 4624. doi: 10.3390 / ijerph17134624
107. Park, Sr, Han, J, Yeon, YM, Kang, NY et Kim, E. Effet du masque facial sur les caractéristiques cutanées changent pendant la pandémie Covid-19. Skin Res Technol . (2021) 27: 554–9. doi: 10.1111 / srt.12983
108. Lee, YH, Kim, H, Heo, DW, Ahn, IS, et Park, HK. Microbiome oral de la surface intérieure des masques faciaux et de la salive entière pendant la pandémie Covid-19. Santé orale avant . (2023) 4: 1178020. doi: 10.3389 / Froh.2023.1178020
109. Szunerits, S, Dӧrfler, H, Pagneux, Q, Daniel, J, Wadekar, S, Woitrain, E, et al. Le condensat de la respiration expirée en tant que bioanalyte: des considérations de collecte à la détection des biomarqueurs. Anal Bioanal Chem . (2023) 415: 27–34. doi: 10.1007 / s00216-022-04433-5
110. Xiang, G, Xu, K, Jian, Y, He, L, Shen, Z, Li, M, et al. Un masque prolongé portant une caractérisation microbienne nasale changée des jeunes adultes pendant la pandémie Covid-19 à Shanghai, en Chine. Immunol avant . (2023) 14: 1266941. doi: 10.3389 / fimmu.2023.1266941
111. Viola, IM, Peterson, B, Pisetta, G, Pavar, G, Akhtar, H, Menoloascina, F, et al. Revêtements de face, dispersion des aérosols et atténuation du risque de transmission du virus, IEEE Open J Eng. Med Biol . (2021) 2: 26–35. doi: 10.1109 / ojemb.2021.3053215
112. Jia, Z, Ai, Z, Cao, S et Bekö, G. Efficacité de l’équipement de protection respiratoire sur le contrôle de la source des polluants expirés. J Build Eng . (2024) 86: 108742. doi: 10.1016 / j.jobe.2024.108742
113. Barari, K, Si, X et Xi, J. Impacts de l’usure des masques et des fuites sur les flux respiratoires cycliques et la thermorégulation faciale. Fluides . (2024) 9: 9. doi: 10.3390 / fluids9010009
115. Shah, Y, Kurelek, JW, Peterson, SD et Yarusevych, S. Investigation expérimentale de la dispersion et de l’accumulation d’aérosols intérieurs dans le contexte de Covid-19: Effets des masques et de la ventilation. Fluides physiques . (2021) 33: 073315. doi: 10.1063 / 5.0057100
116. Datta, R. Utilisation de masques de facettes chirurgicales dans le théâtre de l’opération: efficace ou habitude? Med J Forces armées en Inde . (2010) 66: 163–5. doi: 10.1016 / s0377-1237 (10) 80133-9
117. Barbosa, MH, et Graziano, Ku. Influence du temps de port sur l’efficacité des masques chirurgicaux jetables comme barrière microbienne. Braz J Microbiol . (2006) 37: 216–7. doi: 10.1590 / s1517-83822006000300003
118. Kelkar, États-Unis, Gogate, B, Kurpad, S, Gogate, P et Deshpande, M. Quelle est l’efficacité des masques du visage dans le théâtre de l’opération? Une analyse du calendrier et des recommandations. INT J Contrôle d’infection . (2013) 9: 1–6. doi: 10.3396 / ijic.v9i1.003.13
119. Tcharkhtchi, A, Abbasnezhad, N, Zarbini Seydani, M, Zirak, N, Farzaneh, S et Shirinbayan, M. Un aperçu de l’efficacité de filtration à travers les masques: mécanismes de la pénétration des aérosols. Bioact Mater . (2021) 6: 106–22. doi: 10.1016 / j.bioactmat.2020.08.002
120. McCullough, NV, Brosseau, LM et Vesley, D. Collection de trois aérosols bactériens par respirateur et masque chirurgical filtres dans des conditions de flux et d’humidité relative. Ann occupe Hyg . (1997) 41: 677–90. doi: 10.1016 / s0003-4878 (97) 00022-7
121. Hadayer, A, Zahavi, A, Livny, E, Gal-Or, O, Gershoni, A, Mimouni, K, et al. Les patients portant des masques faciaux lors des injections intravitréennes peuvent être à un risque plus élevé d’endophtalmiste. Rétine . (2020) 40: 1651–6. doi: 10.1097 / iae.000000000000002919
122. Huber, C. Masques, fausse sécurité et dangers réels, partie 4: Mécanismes proposés par lesquels les masques augmentent le risque de Covid-19. Docteur principal Med J. (2020) 1: 1–9. doi: 10.6084 / m9.figshare.14021057
123. Borovoy, B, Huber, C et Crisler, M. Masks, False Safety and Real Dangers, Partie 2: Défis microbiens des masques. PDMJ . (2020) 1: 1–19. Disponible sur: https://pdmj.org/masks2/mask_risks_part2.pdf
124. Wyszyńska, M, Czelakowska, A, Rosak, P, Białożyt-Bujak, E, Gruca, O, Rosak-Szyrocka, J, et al. Changements dans la surface des muqueuses de la cavité buccale sous l’influence du port de masques de visage protectrice – analyse de concentration en oxyde nitrique – rapport préliminaire. Revêtements . (2022) 12: 1164. doi: 10.3390 / revêtements12081164
125. ICRP: Modèle des voies respiratoires humains pour la protection radiologique. Un rapport d’un groupe de travail de la Commission internationale sur la protection radiologique. Ann icrp . (1994) 24: 1–482.
126. Everard, ML, Hardy, JG et Milner, AD. Comparaison du dépôt d’aérosols nébulisé dans les poumons des adultes en bonne santé après l’inhalation orale et nasale. Thorax . (1993) 48: 1045–6. doi: 10.1136 / thx.48.10.1045
127. Cengiz, C et Can, İh. L’effet du N95 et des masques chirurgicaux sur la fonction de clairance mucociliaire et les plaintes sinonasales. Eur Arch Otorrinolaringol . (2022) 279: 759–64. doi: 10.1007 / s00405-021-06838-x
128. Sangkham, S, Faikhaw, O, Munkong, N, Sakunkoo, P, Arunlertaree, C, Chavali, M, et al. Une revue sur les microplastiques et les nanoplastiques dans l’environnement: leur occurrence, les voies d’exposition, les études toxiques et les effets potentiels sur la santé humaine. Mar Pollut Bull . (2022) 181: 113832. doi: 10.1016 / j.marpolbul.2022.113832
129. Kisielinski, K, Hockertz, S, Hirsch, O, Korupp, S, Klosterhalfen, B, Schnepf, A, et al. Le port de masques pour le visage comme source potentielle d’inhalation et d’absorption orale des toxines inanimées – une revue de cadrage. Ecotoxicol Environ Saf . (2024) 275: 115858. doi: 10.1016 / j.ecoenv.2023.115858
130. Khan, A et Jia, Z. Aperçu récent de l’absorption, de la toxicité et des cibles moléculaires des microplastiques et des nanoplastiques pertinentes pour les impacts sur la santé humaine. iscience . (2023) 26: 106061. doi: 10.1016 / j.isci.2023.106061
131. Liang, H, Ji, Y, Ge, W, Wu, J, Song, N, Yin, Z, et al. Libérez la cinétique des microplastiques à partir de masques faciaux jetables dans l’environnement aqueux. Sci Total Environ . (2022) 816: 151650. doi: 10.1016 / j.scitotenv.2021.151650
132. Ma, J, Chen, F, Xu, H, Jiang, H, Liu, J, Li, P, et al. Les masques faciaux comme source de nanoplastiques et de microplastiques dans l’environnement: quantification, caractérisation et potentiel de bioaccumulation. Environ Pollut . (2021) 288: 117748. doi: 10.1016 / j.envpol.2021.117748
133. Zhang, M, Liu, T, Zhang, L, Hua, Z, Guo, Z, Dong, J, et al. Évaluation de l’exposition microplastique dans le liquide de lavage nasal et l’influence des masques faciaux. J Hazard Mater . (2024) 480: 136069. doi: 10.1016 / j.jhazmat.2024.136069
134. Wieland, S, Balmes, A, Bender, J, Kitzinger, J, Meyer, F, Ramsperger, AF, et al. Des propriétés à la toxicité: comparaison des microplastiques à d’autres microparticules aéroportées. J Hazard Mater . (2022) 428: 128151. doi: 10.1016 / j.jhazmat.2021.128151
135. Kasloff, SB, Leung, A, Strong, JE, Funk, D et Cutts, T. Stabilité du SARS-COV-2 sur l’équipement de protection individuelle critique. Sci Rep . (2021) 11: 984. doi: 10.1038 / s41598-020-80098-3
137. Sawada, Y. Dermatite cutanée professionnelle chez les agents de santé associés à la pandémie Covid-19: une revue de la littérature. Int J Mol Sci . (2023) 24: 2989. doi: 10.3390 / ijms24032989
138. Tunçer Vural, A. Le développement d’acné vulgaris en raison de masques face pendant la pandémie, de sensibilisation au risque et d’attitudes d’un groupe d’étudiants universitaires. J Cosmet Dermatol . (2022) 21: 5306–13. doi: 10.1111 / jocd.15120
139. Liu, Y, Zhao, H, Chen, H, Li, X, Ran, C, Sun, H, et al. Le port du masque affecte-t-il la santé de la peau? Une étude de métabolomique cutanée non ciblée. Environ Int . (2023) 178: 108073. doi: 10.1016 / j.envint.2023.108073
140. Brooks, JK, Sultan, AS, et Jabra-Rizk, MA. L’usure prolongée du masque facial est une préoccupation pour le développement du microbiome dysbiotique. Respirat Med Res . (2022) 81: 100877. doi: 10.1016 / j.resmer.2021.100877
141. Koshevarova, VA, Westenhaver, ZK, Schmitz-Brown, M, McKinnon, BJ, Merkley, KH et Gupta, PK. Blépharoconjunctivitis et tendances des maladies oto-rhino-laryngologiques dans le contexte de la port de masques pendant la pandémie Covid-19. CLIN PRACT . (2022) 12: 619–27. doi: 10.3390 / clinpract12040065
142. Schulttheis, WG, Sharpe, JE, Zhang, Q, Patel, Sn, Kuriyan, AE, Chiang, A, et al. Effet de l’enregistrement des masques de face sur le nombre quantitatif de particules près de l’œil: implications pour les injections intravitréennes dans l’ère Covid-19. Am J Ophthalmol . (2021) 225: 166–71. doi: 10.1016 / j.ajo.2021.01.021
143 Utilisation du masque facial et effets sur la santé de la surface oculaire: une revue complète. OCUL SURF . (2023) 27: 56–66. Doi: 10.1016 / j.jtos.2022.12,006
146. Islam, Sr, Prusty, D, Maiti, S, Dutta, R, Chattopadhyay, P et Manna, Skk. Effet de l’utilisation à court terme du masque FFP2 (N95) sur le métabolome salivaire des jeunes volontaires sains: une étude pilote. Mol omics . (2023) 19: 383–94. doi: 10.1039 / d2mo00232a
147. Arora, U, Priyadarsh, M, Katiyar, V, Sonoja, M, Garg, P, Gupta, I, et al. Facteurs de risque de mucormycose associée à la maladie du coronavirus. J Infecter (2022) 84: 383–90. Doi: 10.1016 / j.2021.12.03
148. Kisielinski, K, Steigleder-Schweiger, C, Wagner, S, Korupp, S, Hockertz, S et Hirsch, O. Risques et avantages des masques faciaux chez les enfants. Préimprimés . (2024) 1–51. doi: 10.20944 / prerints202409.1508.v1
150. Matuschek, C, Moll, F, Fangerau, H, Fian, JC, Sönger, K, de Griennven, M, et al. L’histoire et la valeur ou les masques faciaux. Eur J Med Res . (2020) 25:23. doi: 10 1186 / S40001-020-00423-4
151. Lee, SA, Grinshpun, SA et Reponen, T. Performance respiratoire offerte par les respirateurs N95 et les masques chirurgicaux: évaluation du sujet humain avec aérosol NaCl représentant la gamme de taille des particules bactériennes et virales. Ann occupe Hyg . (2008) 52: 177–85. doi: 10.1093 / Annhyg / Men005
152. Ntlailane, MGL et Wichmann, J. Efficacité des respirateurs de N95 pour le contrôle de l’exposition aux nanoparticules (2000-2016): une revue systématique et une méta-analyse. J Nanopart Res . (2019) 21: 170. doi: 10.1007 / s11051-019-4596-0
153. Samaranayake, LP, Fakhruddin, KS, ONG, HC, Chang, JWW et Panduwawala, C. L’efficacité et l’efficacité de l’équipement de protection respiratoire (RPE) en dentisterie et autres établissements de soins de santé: un examen systématique. Acta Odontol Scand . (2020) 78: 626–39. doi: 10.1080 / 00016357.2020.1810769
154. Willeke, K, Qian, Y, Donnelly, J, Grinshpun, S et Ulevicius, V. Pénétration des micro-organismes aéroportés à travers un masque chirurgical et un respirateur de poussière / brume. Am Ind Hyg Assoc j . (1996) 57: 348–55. doi: 10.1080 / 15428119691014882
156. Qian, Y, Willeke, K, Grinshpun, SA, Donnelly, J et Coffey, CC. Performance des respirateurs N95: efficacité de filtration pour les particules microbiennes et inertes aériennes. Am Ind Hyg Assoc j . (1998) 59: 128–32. doi: 10.1080 / 15428119891010389
157. Loeb, M, Dafoe, N, Mahony, J, John, M, Sarabia, A, Glavin, V, et al. Masque chirurgical vs respirateur N95 pour prévenir la grippe chez les travailleurs de la santé: un essai randomisé. Jama . (2009) 302: 1865–71. doi: 10.1001 / jama.2009.1466
158. Smith, JD, MacDougall, CC, Johnstone, J, Copes, RA, Schwartz, B et Garber, Ge. Efficacité des respirateurs N95 par rapport aux masques chirurgicaux dans la protection des travailleurs de la santé contre les infections respiratoires aiguës: une revue systématique et une méta-analyse. CMAJ . (2016) 188: 567–74. doi: 10.1503 / CMAJ.150835
159. Liu, I, Prasad, V et Darrow, J. Preuve du masquage du visage communautaire pour limiter la propagation de SAR-COV-2: une revue critique. Matrice de santé J Law Med . (2023) 33: 1. Disponible sur: https://scholarlycommons.law.case.edu/healthmatrix/vol33/iss1/1/
160. Vincent, M, et Edwards, P. masques de visage chirurgical jetable pour prévenir l’infection chirurgicale en chirurgie propre. COCHRANE DATABASE SYST REV . (2016) 2016: CD002929. doi: 10.1002 / 14651858.cd002929.pub3
161. Burdick, HN et Maibach, H. Pertinence clinique des masques dans la salle d’opération? Une revue systématique. Clin Infect Pract . (2021) 12: 100087. doi: 10.1016 / j.clinpr.2021.100087
162. Carbon, CC. Le port de masques pour le visage confond fortement les homologues dans la lecture des émotions. Front Psychol . (2020) 11: 566886. doi: 10.3389 / fpsyg.2020.566886
164. OMS, World Medical Association (WMA): Déclaration d’Helsinki. Principes éthiques pour la recherche médicale impliquant des sujets humains. Bull World Health Organ . (2001) 79: 373–4.
165. Elgersma, IH, Fretheim, A, Elstrøm, P et Aavitsland, P. Association entre l’utilisation du masque facial et le risque d’infection SAR-COV-2: étude transversale. Infection de l’épidémiol . (2023) 151: E194. doi: 10.1017 / s0950268823001826
166. Boretti, A. Efficacité des mandats de masquage du visage généralisés, de la recherche sur les services de santé et de la gestion. Épidémiologie . (2021) 8: 23333928211058023. doi: 10.1177 / 23333928211058023
167. Galanis, P, Vraka, I, Fragkou, D, Bilali, A et Kaitelidou, D. Impact de l’utilisation des équipements de protection personnelle sur la santé physique des travailleurs de la santé pendant la pandémie de Covid-19: une revue systématique et une méta-analyse des travailleurs . Am J Contrôle infecté . (2021) 49: 1305–15. doi: 10.1016 / j.ajic.2021.04.084
168. Unoki, T, Sakuramoto, H, Sato, R, Ouchi, A, Kuribara, T, Furumaya, T, et al. Effets négatifs de l’équipement de protection personnelle parmi les professionnels de la santé des unités de soins intensifs pendant la pandémie Covid-19: une revue de portée. Sage Open Nurse . (2021) 7: 23779608211026164. doi: 10.1177 / 23779608211026164
169. Dirol, H, Alkan, E, Sindel, M, Ozdemir, T et Erbas, D. Les effets physiologiques et inquiétants des masques de visage chirurgical à l’ère Covid-19. BLL . (2021) 122: 821–5. doi: 10.4149 / bll_2021_131
170. Gaikwad, RP, Banodkar, AB et Nandgaonkar, vice-président. Conséquences respiratoires du masque N95 pendant la pandémie Covid-19 – une étude observationnelle. Int J Health Sci Res . (2021) 11: 55–61. doi: 10.52403 / ijhsr.20210407
171. Walach, H, Traindl, H, Prentice, J, Weikl, R, Diemer, A, Kappes, A, et al. Le dioxyde de carbone s’élève au-delà des niveaux de sécurité acceptables chez les enfants sous couverture du nez et de la bouche: résultats d’une étude de mesure expérimentale chez les enfants en bonne santé. Environ Res . (2022) 212: 113564. doi: 10.1016 / j.envre.2022.113564
172. Acuti Martellucci, C, Flacco, ME, Martellucci, M, Violante, FS et Manzoli, L. Concentration inhalée du CO 2 tout en portant des masques faciaux: une étude pilote utilisant la capnographie. Environ Health Insights . (2022) 16: 11786302221123573. doi: 10.1177 / 11786302221123573
173. Ahmad, MDF, Wahab, S, Ali Ahmad, F, Intakhab Alam, M, Ather, H, Siddiqua, A, et al. Une nouvelle approche en perspective pour explorer les avantages et les inconvénients du masque facial dans la prévention de la propagation du SRAS-COV-2 et d’autres agents pathogènes. Pharm saoudien j . (2021) 29: 121–33. doi: 10.1016 / j.jsps.2020.12.014
174. Shobako, N. Leçons des politiques de santé pour les enfants pendant la pandémie au Japon. Santé publique avant . (2022) 10: 1015955. doi: 10.3389 / fpubh.2022.1015955
175. Kampf, G. Effet du masquage du visage sur la transmission de SARS-CoV-2 dans: N Rezaei, éditeur. Les conséquences Covid-19: Volume II: leçons apprises . Suisse, Cham: Springer Nature (2024). 175–99. doi: 10.1007 / 978-3-031-61943-4_12
176. Beauchamp, JD, et Mayhew, ca. Revisiter la justification du masquage obligatoire. J souffle res . (2023) 17: 042001. doi: 10.1088 / 1752-7163 / ACDF12
177. Sandlund, J, Duriseti, R, Ladhani, Sn, Stuart, K, Noble, J et Beth Høeg, T. Masques face et protection contre le Covid-19 et d’autres infections respiratoires virales: évaluation des avantages et préjudices chez les enfants. Paediatr respir Rev. (2024). doi: 10.1016 / j.prrv.2024.08.003
178. Mastropasqua, L, Lanzini, M, Brescia, L, D’Aloisio, R, Nubile, M, Ciancaglini, M, et al. Modifications de surface oculaire liées au masque en face pendant la pandémie Covid-19: une microscopie confocale clinique, in vivo et une étude immuno-cytologie. Trad vis sci technol . (2021) 10:22. doi: 10.1167 / tvst.10.3.22
179. D’souza, S, Vaidya, T, Nair, AP, Shetty, R, Kumar, Nr, Bisht, A, et al. Altération de l’état de santé de la surface oculaire et profil immunitaire du film lacrymal en raison d’une usure de masque quotidienne prolongée chez les travailleurs de la santé. Biomédicines . (2022) 10: 1160. doi: 10.3390 / biomédicines10051160
180. Jin, S, Wetzel, D et Schirmer, M. Déchiffrer les mécanismes et implications de la translocation bactérienne en santé humaine et maladie. Curr Opin Microbiol . (2022) 67: 102147. doi: 10.1016 / j.mib.2022.102147
181. Asadi, S, Cappa, CD, Barreda, S, Wexler, AS, Bouvier, NM et RistenPart, Wd. Efficacité des masques et des revêtements de visage dans le contrôle des émissions de particules aérosols extérieures des activités expiratoires. Sci Rep . (2020) 10: 15665. doi: 10.1038 / s41598-020-72798-7
182. Bagchi, S, Basu, S, Chaudhuri, S et Saha, A. Pénétration et atomisation secondaire des gouttelettes touchées sur les masques humides. Phys Rev Fluids . (2021) 6: 110510. doi: 10.1103 / PhysRevfluids.6.110510
183. Rebmann, T, Carrico, R et Wang, J. Effets physiologiques et autres et conformité à l’utilisation des respirateurs à long terme chez les infirmières de l’unité de soins intensifs médicaux. Am J Contrôle infecté . (2013) 41: 1218–23. doi: 10.1016 / j.ajic.2013.02.017
184. Matusiak, ł, Szepietowska, M, Krajewski, P, Białynicki-Birula, R, et Szepietowski, JC. Inconvénients dus à l’utilisation de masques faciaux pendant la pandémie Covid-19: une étude de 876 jeunes. Dermatol ther . (2020) 33: E13567. doi: 10.1111 / dth.13567
185. Naylor, G, Burke, LA et Holman, Ja. Le verrouillage de Covid-19 affecte le handicap auditif et le handicap de diverses manières: une étude d’enquête en ligne rapide. Oreille entendre . (2020) 41: 1442–9. doi: 10.1097 / aud.0000000000000948
186. Thomas, F, Allen, C, Butts, W, Rhoades, C, Brandon, C et Handrahan, DL. Le port d’un masque chirurgical ou de N95-Ruirator altait-il la communication radio? Air Med J. (2011) 30: 97–102. doi: 10.1016 / j.amj.2010.12.007
187. Heider, CA, Álvarez, ML, Fuentes-López, E, González, CA, León, Ni, Verástegui, DC, et al. Prévalence des troubles de la voix chez les travailleurs de la santé dans l’ère universelle du masquage Covid-19. Laryngoscope . (2020) 131: E1227–33. Doi: 10.1002 / Lary.
188. Zarei, N, Negarandeh, R et Neshat, H. Défis de communication causés par le port de masques et stratégies utilisés par les infirmières pédiatriques pendant la pandémie Covid-19: une étude qualitative. J Pediatr Nurs . (2024) 77: E54–61. doi: 10.1016 / j.ppedn.2024.03.020
189. Sezer, H, çınar, D et Kılıç Akça, N. L’effet de l’utilisation prolongée des masques chirurgicaux pendant l’enseignement en face à face sur les paramètres cognitifs et physiologiques des étudiants en soins infirmiers: une étude transversale et descriptive. Nurse Educ Practice . (2023) 72: 103779. doi: 10.1016 / j.nepr.2023.103779
19 .. Elle, C, Haim, Have Grot, Jx, Sch et Junne, Yennament, H. PROVE SIGNRICAL FIMTIANT LOI ASTES SITS SITE Effective Effective J. (2021) 58: 2101131. Doi: 10.1183 / 13993003.01131-2021
191. Chandra, A et Høeg, TB. Manque de corrélation entre les mandats de masque scolaire et les cas de Covid-19 de Covid-19 pédiatriques dans une grande cohorte. J Infect . (2022) 85: 671–5. doi: 10.1016 / j.jinf.2022.09.019
193. Wang, MX, Gwee, Sxw, Chua, Pey et Pang, J. Efficacité des masques de visage chirurgical dans la réduction des infections respiratoires aiguës en milieu de santé: une revue systématique et une méta-analyse. Avant Med . (2020) 7: 564280. doi: 10.3389 / fmed.2020.564280
194. Fønhus, MS, Dalsbø, TK et Brurberg, KG, masques pour prévenir la transmission des maladies respiratoires, telles que Covid-19, Norwegian Institute of Public Health. (2021). Disponible sur: https://hdl.handle.net/11250/2756758
195. Aiello, AE, Perez, V, Coulborn, RM, Davis, BM, Uddin, M et Monto, AS. Facemases, hygiène des mains et grippe chez les jeunes adultes: un essai d’intervention randomisé. Plos un . (2012) 7: E29744. doi: 10.1371 / journal.pone.0029744
197. Alfelali, M, Haworth, EA, Barasheed, O, Badahdah, AM, Bokhary, H, Tashani, M, et al. Équipe de recherche du Hajj, Facemask contre les infections respiratoires virales chez les pèlerins du Hajj: un essai difficile en grappe. Plos un . (2020) 15: E0240287. doi: 10.1371 / journal.pone.0240287
199. MacIntyre, CR, Cauchemez, S, Dwyer, DE, Seale, H, Cheung, P, Browne, G, et al. Utilisation du masque facial et contrôle de la transmission du virus respiratoire dans les ménages. Émerger infecte dis . (2009) 15: 233–41. doi: 10.3201 / eid1502.081166
200. MacIntyre, CR, Seale, H, Dung, TC, Hien, NT, NGA, PT, Chughtai, AA, et al. Un essai randomisé en grappe de masques en tissu par rapport aux masques médicaux chez les travailleurs de la santé. BMJ ouvert . (2015) 5: E006577. doi: 10.1136 / bmjopen-2014-006577
201. Simmerman, JM, Suntarattiwong, P, Levy, J, Jarman, RG, Kaewchana, S, Gibbons, RV, et al. Résultats d’un essai contrôlé randomisé au ménage de lavage des mains et de masques faciaux pour réduire la transmission de la grippe à Bangkok, en Thaïlande. Grippe d’autres virus respir . (2011) 5: 256–67. doi: 10.1111 / j.1750-2659.2011.00205.x
202. Cowling, BJ, Fung, Rop, Cheng, Cky, Fang, VJ, Chan, KH, Seto, WH, et al. Résultats préliminaires d’un essai randomisé d’interventions non pharmaceutiques pour empêcher la transmission de la grippe dans les ménages. Plos un . (2008) 3: E2101. doi: 10.1371 / journal.pone.0002101
203. Cowling, BJ, Chan, KH, Fang, VJ, Cheng, CKY, Fung, Rop, Wai, W, et al. Facemases et hygiène des mains pour prévenir la transmission de la grippe dans les ménages: un essai randomisé en grappe. Ann Intern Med . (2009) 151: 437–46. doi: 10.7326 / 0003-4819-151-7-200910060-00142
204. Suess, T, Remschmidt, C, Schink, SB, Schweiger, B, Nitsche, A, Schroeder, K, et al. Le rôle des masques faciales et de l’hygiène des mains dans la prévention de la transmission de la grippe dans les ménages: résultats d’un essai randomisé en grappe; Berlin, Allemagne, 2009-2011. BMC Infecte Dis . (2012) 12:26. doi: 10.1186 / 1471-2334-12-26
205. Larson, El, Ferng, Y, Wong-McLoughlin, J, Wang, S, Haber, M et Morse, SS. Impact des interventions non pharmaceutiques sur les uris et la grippe dans les ménages urbains bondés. Rep . (2010) 125: 178–91. doi: 10.1177 / 003335491012500206
206. Jacobs, JL, Ohde, S, Takahashi, O, Tokuda, Y, Omata, F et Fukui, T. procès. Am J Contrôle infecté . (2009) 37: 417–9. doi: 10.1016 / j.ajic.2008.11.002
207. Bundgaard, H, Bundgaard, JS, Raaschou-Pedersen, Det, von Buchwald, C, Todsen, T, Norwegian, JB, et al. Efficacité de l’ajout d’une recommandation de masque à d’autres mesures de santé publique pour prévenir l’infection SAR-COV-2 chez les porteurs de masques danois. Ann interne avec . (2020). doi: 10.7326 / m20-6817
208. Juutinen, A, Sarvikivi, E, Laukkanen-Nevala, P, et Helve, O. Les recommandations de masques face dans les écoles n’ont pas eu d’impact sur l’incidence de Covid-19 chez les enfants de 10 à 12 ans en Finlande – Analyse de régression de jointure. BMC Public Health . (2023) 23: 730. doi: 10.1186 / s12889-023-15624-9
209. Gómez-Ochoa, SA et Muka, T. La méta-analyse sur l’utilisation du masque en facemas en milieu communautaire pour prévenir la transmission des infections respiratoires ne montre aucun effet. Int J Infecte Dis . (2021) 103: 257–9. doi: 10.1016 / j.ijid.2020.11.139
Citation: Kisielinski K, Wojtasik B, Zalewska A, Livermore DM et Jurczak-Kurek A (2024) Le fardeau bactérien des masques de visage usés – Recherche et revue de la littérature. Devant. Santé publique . 12: 1460981. doi: 10.3389 / fpubh.2024.1460981
Reçu: 18 juillet 2024; Accepté: 30 octobre 2024; Publié: 03 décembre 2024.
Robert Kennedy Jr vient d’être confirmé à la tête du département américain de la santé (HHS). Son arrivée avec des équipiers de poids, le Pr Jay Bhattacharya au NIH, le Dr Dave Weldon au CDC, le Dr Marty Makary à la FDA et le Dr Aseem Malhotra comme conseiller du président Trump, laisse espérer une révolution dans la politique de santé américaine. Mais ces cinq rebelles lors de la “crise sanitaire”, défenseurs de la science et des libertés, seront‑ils à la hauteur de leurs promesses? Feront‑ils éclater la vérité sur l’origine du coronavirus, le hold‑up de Big Pharma et le désastre, présent et à venir, des injections covid? Auront‑ils le pouvoir de s’attaquer aux responsables et à la corruption du système? On veut le croire, mais on les jugera sur leurs actes. Galerie de portraits de Kennedy et ses hommes, placés aux postes clés.
Jamais la nomination d’un secrétaire d’État à la santé n’aura suscité autant de controverses que celle de Robert Kennedy Jr. Le secrétariat des HHS (Health & Human Services), équivalent américain du ministère de la santé, représente près de 20% du budget fédéral. Celui qui occupe ce poste, contrôle 14 subdivisions ou agences gouvernementales. Il supervise et finance la recherche médicale et scientifique par l’intermédiaire des NIH (National Institutes of Health). Il contrôle la sécurité et l’efficacité des produits pharmaceutiques et des aliments à travers la FDA (Food & Drug Administration). Il pilote la prévention et le suivi des épidémies par l’intermédiaire du CDC (Center For Disease Control). Il assure un accès aux soins pour les personnes âgées ou précarisées via Medicare et Medicaid. C’est donc véritablement un pouvoir colossal qui vient d’être confié à Robert Kennedy Jr.
Sa nomination a catalysé tous les espoirs de changement de ceux qui dénoncent la corruption des agences gouvernementales et réclament une remise en question de la santé publique. Une réforme du système, notamment de la recherche biologique et médicale, qui, à n’en pas douter, aurait un impact au niveau mondial. Robert Kennedy Jr s’est aussitôt heurté aux calomnies de la presse et aux attaques d’une majorité de la communauté scientifique et médicale ainsi que des membres du parti démocrate contre celui qu’ils dépeignent comme un “dangereux complotiste antivax”. Il a cependant survécu à un parcours miné, obtenant de justesse l’aval de la Commission des Finances puis de la Santé, jusqu’à la confirmation de sa nomination par un vote du Sénat, 52 voix contre 48, jeudi 13 février 2025.
Promettre, faire des compromis, trahir; telles sont les règles du jeu politique. Il ne doit sa validation par la Commission des Finances, 14 voix contre 13, qu’aux promesses faites au sénateur républicain Bill Cassidy. Promesse, par exemple, de conserver le système actuel de surveillance de la sécurité, notamment celle des vaccins, et de continuer à affirmer qu’ils ne sont pas la cause de l’autisme. Véritables concessions, ou jeu de passe‑passe politique? Les promesses n’engagent que ceux qui y croient… Mais on doit pourtant se demander si cette nouvelle équipe, déployée par Trump pour assainir la santé publique, aura les moyens de ses ambitions.
C’est Trump lui‑même qui a placé la première mine sur la route de Robert Kennedy Jr. En effet, dès le lendemain de son investiture, le président lançait fièrement un titanesque projet de développement de l’IA, dont l’une des missions devrait être une nouvelle plateforme vaccinale ARNm contre le cancer. Doutes et frustration ont alors succédé aux espoirs d’un vrai changement de cap. Vers quel genre d’âge d’or le président Trump veut‑il vraiment ouvrir la voie? Une société du contrôle numérique, où les patients sont des numéros de dossiers et les soins sont prodigués par une machine? Donald Trump qui n’a d’ailleurs jamais exprimé le moindre regret concernant le lancement accéléré des injections contre le Covid‑19 via l’opération Warp Speed en 2020, injections qui continuent de faire de nombreuses victimes à travers le monde.
Difficile pour Kennedy de concilier ses convictions personnelles, sur l’avortement, la fluoration de l’eau et surtout le manque de sécurité des vaccins, avec une ligne politique définie par la Maison‑Blanche, et des politiques et fonctionnaires sous influence du lobby industriel de la santé, qui les finance. Ce double écueil est apparu clairement lors des auditions devant le Sénat.
Alors, peut‑on annoncer une véritable révolution dans la politique sanitaire américaine grâce à l’arrivée des “hommes de Kennedy” aux postes clés? Quelle sera leur marge de manœuvre? Le Pr Christian Perronne, auteur de la préface du livre de Robert Kennedy Jr, Anthony Fauci, Bill Gates, Big Pharma, invité du gala MAHA (Make America Healthy Again) et interrogé au téléphone par BAM! lors de ce gala, reste optimiste mais pragmatique. “Il faut leur laisser le temps de s’installer. Je pense qu’il va y avoir des changements. C’est déjà énorme ce qui se passe. Ces nominations sont déjà une véritable révolution. Ensuite, on jugera leurs actes”…
Robert F. Kennedy Jr, la bête noire de Big Pharma
Il vient d’être confirmé au poste de Secrétaire d’État chargé de la Santé et des Services Sociaux (HHS). Avocat, spécialiste en droit de l’environnement, il est aussi l’héritier symbolique d’une grande dynastie démocrate. Il est le neveu du président John F. Kennedy et le fils du sénateur, ministre de la justice, puis candidat à la présidence, Robert F. Kennedy, tous deux assassinés lorsque “Bobby Jr” était enfant. Après avoir été lui‑même candidat aux présidentielles de 2024, Robert Kennedy Jr s’est rallié au camp de Donald Trump, en août 2024, en échange d’une promesse du futur président de lui donner l’opportunité de réformer la santé publique aux États‑Unis. Le pari de Kennedy était que Trump, désillusionné par les hommes dont il s’était entouré durant son premier mandat et désireux d’un vrai changement, serait le seul capable de lui fournir cette véritable opportunité[1] de “drainer le marécage” de Washington, le marécage au sein des agences de régulation[2].
Selon les propres déclarations de Kennedy, il s’est mis d’accord avec le président sur trois objectifs majeurs[3]. Tout d’abord, éliminer la mainmise des intérêts privés et la corruption des agences de santé publique. “Il m’a demandé d’éradiquer la corruption et de mettre fin aux conflits d’intérêts au sein de nos agences de régulation, à cette mainmise des multinationales, qui a transformé ces agences en marionnettes de l’industrie qu’elles sont censées réguler[4].” Ce premier objectif est une condition indispensable pour atteindre le second, qui est de recentrer la priorité des agences fédérales sur l’excellence scientifique et d’en restaurer la transparence.
Le troisième objectif tient particulièrement à cœur à Robert Kennedy Jr, cofondateur de l’association Children Health Defense (CHD) qui défend la santé des enfants. Il s’agit de s’attaquer à l’épidémie de maladies chroniques qui détruit la société américaine. Ce n’est pas un moindre défi. 74% des américains sont obèses ou en surpoids et plus de 50% souffrent d’une ou plusieurs maladies chroniques. On observe une augmentation, parfois exponentielle, du diabète, des maladies auto‑immunes et cardiovasculaires, de l’ADHD et de l’autisme, des dépressions et des addictions. 38% des adolescents sont diabétiques ou pré-diabétiques et 77% sont considérés inaptes au service militaire. Pour Robert Kennedy Jr, c’est “non seulement un problème de sécurité nationale, mais aussi un problème moral et spirituel[5].”
Il pointe principalement du doigt “deux coupables: les aliments ultra‑transformés et les produits chimiques toxiques, présents dans l’alimentation, la médecine et l’environnement[6].” Des affirmations notamment supportées par 32 études qui montrent que les aliments ultra‑transformés causent de multiples problèmes de santé[7]. “Nous sommes massivement empoisonnés par Big Food et Big Pharma[8]. Nos enfants baignent dans une soupe toxique de produits chimiques délétères[9].” D’où la naissance du programme MAHA (Make America Healthy Again), pour restaurer la santé de l’Amérique, et dont le président Trump souhaite voir “des résultats mesurables dans les deux ans[10].”
Pour Robert Kennedy Jr, les vaccins sont l’un des composants de la “soupe toxique” qui menace la santé des enfants. De nombreuses études ont établi des liens troublants entre vaccination et autisme[11], ainsi que d’autres troubles neurodéveloppementaux[12].
À propos des vaccins… Aux USA, l’augmentation des diagnostics d’autisme suit une courbe exponentielle[13]. Une étude relue par des pairs, parue en janvier 2025, conclut à un risque d’autisme accru de 170 %, ainsi que d’autres troubles neurodéveloppementaux accrus de 212 %, chez les enfants vaccinés[14]. Ce que le CDC, le Centre de Contrôle des Maladies, continue de nier fermement. Pourtant, un document interne du CDC atteste d’une réunion, durant laquelle les intervenants des agences de régulation et de l’industrie, auraient discuté de la façon de cacher des données embarrassantes. Il faut dire qu’avec 72 injections préconisées dans l’agenda vaccinal des enfants américains entre 0 et 18 ans, c’est un marché que le lobby pharmaceutique n’est pas disposé à perdre. D’autant plus que la loi fédérale de 1986 sur les blessures causées par les vaccins[15], protège les fabricants contre toute poursuite liée aux effets indésirables. Une protection renforcée en 2011 par un jugement de la Cour Suprême, qui s’est prononcée contre un recours en justice au niveau des États fédéraux[16].
La sécurité des vaccins est l’un des chevaux de bataille de Robert Kennedy Jr. Mais il avoue lui‑même que Donald Trump “ne souhaite pas que je supprime l’accès aux vaccins. Dans ce pays, nous croyons au libre choix. Mais il faut connaître les risques et les avantages de tout ce que nous consommons. Pour cela nous avons besoin d’une bonne science, nous avons besoin d’un consentement éclairé[17]”.
Parmi les autres produits toxiques dans le collimateur du nouveau Secrétaire à la Santé, il y a également la fluoration de l’eau du robinet. RFK Jr a déjà demandé au président de faire cesser l’adjonction de fluorure dans l’eau potable, après l’avoir mis en garde contre sa neurotoxicité[18].
Kennedy Jr a également fait partie des opposants à la politique menée par Anthony Fauci, durant la “crise” Covid‑19. Fauci dont il a répertorié les nombreuses compromissions dans un livre paru en décembre 2021, Anthony Fauci, Bill Gates, Big Pharma – leur guerre mondiale contre la démocratie et la santé publique. Dès le mois de mai 2021, il avait par ailleurs demandé au gouvernement fédéral de suspendre l’autorisation de mise sur le marché des “vaccins contre le Covid‑19”, les qualifiant de “vaccins les plus mortels jamais fabriqués[19].” Il lui tient donc à cœur de faire la lumière sur cette affaire. Et les hommes qui le seconderont, si leur nomination par le président Trump est confirmée par le Sénat, tiennent tout autant que Kennedy Jr à ce que la vérité prévale.
Jay Bhattacharya, le défenseur des libertés
Nommé directeur des NIH (National Institutes of Health / Institut nationaux de la Santé), Jay Bhattacharya contrôlera un budget colossal de plus de 47 milliards de dollars[20], pour le financement de la recherche scientifique, biologique et médicale. Parmi les 27 instituts que regroupe le NIH, il y a par exemple le NIAID (National Institute of Allergy and Infectious Diseases), supervisant la recherche sur les maladies infectieuses, dirigé jusqu’en décembre 2022 par Anthony Fauci, qui fut notamment à l’origine des fonds attribués à EcoHealth Alliance pour les recherches en gain de fonction sur le SARS‑COV‑2 à Wuhan.
Chercheur à l’université de Stanford, Jay Bhattacharya est à la fois professeur de médecine, d’économie et de recherche en politique de santé. Épidémiologiste et économiste des maladies infectieuses, il dirige notamment le Centre sur la Démographie de la Santé et du Vieillissement de Stanford. C’est un homme ouvert d’esprit, qui croit et pratique le dialogue.
Il fut l’un des premiers à s’insurger contre la gestion du Covid‑19 par les autorités sanitaires. Dès octobre 2020, il rédigea, avec deux autres épidémiologistes de renom, la Déclaration de Great Barrington[21], qui a depuis recueilli plus de 940 000 signatures. Dans cette lettre ouverte, il mettait en garde les responsables de la santé publique contre les conséquences néfastes des confinements généralisés, proposant comme alternative la protection focalisée des personnes fragiles, tout en laissant le reste de la société ouverte, favorisant le développement d’une immunité de groupe.
Tandis qu’un véritable débat scientifique aurait été nécessaire, les responsables du NIH s’étaient au contraire alarmés du bruit suscité par cette déclaration. Leurs e‑mails (obtenus grâce à la Loi sur la Liberté d’Information) ont révélé qu’ils ont alors jugé qu’il fallait réagir par “une opération pour les discréditer, rapide et dévastatrice[22]”, en qualifiant notamment le Professeur Bhattacharya et ses coauteurs d’“épidémiologistesmarginaux”[23]. Accusation tournée en dérision par l’intéressé, par la création d’une émission scientifique incontournable intitulée Science à la marge (Science from the Fringe)[24].
Revanche du destin, le “marginal” devrait se retrouver à la tête du plus important organisme gouvernemental de financement de la recherche biomédicale au monde. Plus de 300 000 chercheurs, 2 500 universités et de nombreux organismes publics et privés, dépendent des subventions des NIH. Leur rôle est donc primordial dans l’orientation et le contrôle de la recherche.
Jay Bhattacharya, défenseur de la liberté académique et pourfendeur du pseudo consensus scientifique, entend restaurer la confiance dans la science et la recherche, en divisant les centres de décision afin d’éviter un monopole du pouvoir entre les mains d’un petit groupe de bureaucrates. Une façon aussi de stimuler l’excellence. Appelé à témoigner devant la Commission du Congrès sur le Covid, le Pr Bhattacharya avait en effet dénoncé la censure pratiquée par “une petite cabale de bureaucrates, arrogants, mesquins et puissants”[25], fonctionnant “davantage comme des dictateurs que comme des scientifiques”[26]. Il avait qualifié leur “acceptation de la censure gouvernementale de la discussion scientifique” comme étant la plus grande menace actuelle contre la démocratie[27], démontrant que le gouvernement américain avait été la principale source de désinformation[28].
Le Pr Bhattacharya souhaite qu’une commission, non plus politique mais scientifique, puisse enquêter sur les politiques Covid, qui ont violé l’éthique médicale, réduit des scientifiques au silence et imposé des injections dangereuses et dévastatrices. “La censure tue la science et, dans ce cas, je pense que la censure a tué des gens”, il estime qu’il faudra présenter des excuses aux Américains[29].
Marty Makary, monsieur immunité naturelle
Le Dr Marty Makary, est le choix de Donald Trump pour prendre la tête de la FDA (Food and Drug Administration), l’agence américaine de régulation des aliments et des médicaments. Bien que considérée comme la moins controversée parmi la sélection de Trump pour la santé, cette nomination a quand même fait grincer quelques dents. “La FDA a perdu la confiance des Américains et a perdu de vue son objectif premier de régulateur” a expliqué le président. Avant d’ajouter, “l’agence a besoin du Dr Marty Makary, chirurgien oncologue très respecté et expert en politique de santé, pour changer de cap”[30].
Ce spécialiste du cancer du pancréas avait lui‑même sévèrement jugé l’agence qu’il doit maintenant diriger. “Le covid nous a permis de jeter un regard lucide sur une FDA défaillante, embourbée dans la politique et la bureaucratie”[31]. Tandis que Robert Kennedy Jr, annonçait : “La guerre de la FDA contre la santé publique est sur le point de prendre fin”. Il avait cité une liste de produits censurés par l’administration, comme les cellules souches, l’ivermectine, l’hydroxychloroquine, les vitamines, des aliments comme le lait cru et des bienfaits naturels non brevetables, comme l’exposition au soleil, avant de lancer un avertissement. “Si vous travaillez pour la FDA et que vous faites partie de ce système corrompu, j’ai deux messages pour vous : 1. sauvegardez vos dossiers, et 2. préparez vos valises”[32].
La FDA octroie ou refuse les autorisations de mise sur le marché des produits alimentaires et pharmaceutiques. Cette administration est souvent dénoncée pour ses compromissions avec les entreprises privées qu’elle régule et dont provient 45% de son financement[33]. La pratique des “portes tournantes”, qui permettent à d’anciens salariés de Big Pharma d’obtenir des postes de régulation, et aux anciens fonctionnaires de négocier leur fin de carrière dans les compagnies qu’ils ont régulées, favorise la corruption. On rappellera que c’est la FDA qui, sommée au titre de la Loi sur la Liberté de l’Information (Freedom of Information Act) de fournir sa documentation sur la sécurité des injections Pfizer, avait demandé un délai de 75 ans, avant d’être contrainte à la fournir sous 8 mois par la justice[34]. La FDA fut aussi à l’origine d’une campagne médiatique mensongère pour ridiculiser le recours à l’Ivermectine, en qualifiant ce médicament reconnu de longue date d’antiparasitaire pour chevaux.
Diplômé de Harvard en santé publique, chef du service de chirurgie spécialisé dans la transplantation de cellules pancréatiques à la l’Université médicale John Hopkins, membre de l’Académie Nationale de Médecine, le Dr Marty Makary s’est fait connaître par de nombreuses publications scientifiques et trois NYTimes best‑sellers, dans lesquels il dénonçait notamment le coût exorbitant de la santé aux USA, les erreurs médicales et le manque de transparence. Après avoir initialement soutenu les confinements et le port du masque au tout début de la crise covid, Marty Makary s’était insurgé contre le refus d’Anthony Fauci de reconnaître l’immunité naturelle, acquise par une partie de la population. Citant 200 études dont la sienne, -65 vérifiées par le Lancet-, il avait argumenté: “toutes les études concluent que l’immunité naturelle est au moins aussi efficace que l’immunité acquise par le vaccin et probablement plus efficace”[35].
Sans être par ailleurs opposé à la vaccination, il avait cependant réagi énergiquement contre les obligations vaccinales, déplorant notamment que les universités aient “ignoré les données et forcé de jeunes étudiants en bonne santé à choisir entre le risque de myocardite ou être mis à la porte de leur école, même s’ils avaient déjà acquis une immunité naturelle”[36]. Marty Makary avait témoigné dans ce sens devant la Commission du Congrès
Il soutient la plateforme Make America Healthy Again proposée par Robert Kennedy Jr, et sa propre mission à la FDA sera “d’évaluer les produits toxiques qui empoisonnent l’alimentation, ainsi que les médicaments et autres produits pharmaceutiques (..) pour s’attaquer à l’épidémie de maladies chroniques, notamment chez les enfants”, selon les termes du président[37]. Il milite pour la prévention et l’éducation plutôt que la médication, ce qui n’est pas forcément pour plaire à l’industrie. “Nous avons la population la plus surmédicalisée et la plus malade du monde et personne ne parle des causes profondes”. Citant par exemple : “Peut-être devrions‑nous parler des repas scolaires, plutôt que de mettre les enfants sous médicaments contre l’obésité”[38].
Dave Weldon, le cauchemar des fabricants de vaccins
Choisi par le président Trump pour diriger le CDC (Center for Disease Control), le Dr David Weldon doit occuper le poste clé de la prévention et du contrôle des maladies, bien que n’ayant pas de formation classique en santé publique. En revanche, ce médecin généraliste de Floride a une longue expérience de la politique. Ce républicain a en effet été élu pour représenter son État au Congrès durant sept mandats consécutifs, de 1995 à 2009, avant de reprendre ses consultations médicales.
Durant son passage à la Chambre des Représentants, le Dr Weldon a siégé dans plusieurs commissions dont celles concernant la science, ou la santé et les services sociaux. Il s’est distingué par des prises positions dissidentes. En 2007, il a notamment proposé, sans succès, un projet de loi (le Vaccine Safety and Public Confidence Act) pour faire interdire le thimerosal dans les vaccins. Ce dérivé du mercure est fréquemment utilisé comme conservateur dans les préparations vaccinales. Et, bien que le CDC nie officiellement tout lien de causalité, il est soupçonné d’être associé à la multiplication des cas d’autisme parmi les enfants. Dave Weldon réclamait également la création d’une agence indépendante, chargée de mener des recherches sur la sécurité des vaccins. Il avait alors pointé du doigt les conflits d’intérêts au sein du CDC et de la FDA[39].
Sa position, proche de celle de Robert Kennedy Jr sur ce sujet, pourrait donc ébranler le CDC, l’agence fédérale qui détermine les programmes de vaccination. D’autant plus que la gestion coercitive du Covid‑19 par le CDC est fortement critiquée. Son ancienne directrice, Rochelle Walenski, a elle‑même admis avoir diffusé des informations fausses ou incomplètes[40], notamment sur l’efficacité et la sécurité des injections ou en parlant d’une “pandémie des non‑vaccinés” sans avoir de données sur le statut vaccinal des malades hospitalisés[41]. Grâce à la Loi sur la Liberté d’Information, on a désormais la preuve que le CDC a directement orchestré, sur les réseaux sociaux, la censure des opposants[42]. Donald Trump, lui‑même, en nommant le Dr Dave Weldon, a officiellement dénoncé le CDC pour “s’être livréà la censure, à la manipulation de données et à la désinformation”[43].
Dave Weldon est également à l’origine d’un amendement qui porte son nom, et interdit au département de la santé de financer des programmes pratiquant la discrimination contre les personnels soignants qui refusent de promouvoir ou de pratiquer l’avortement. Il a par ailleurs participé à l’interdiction du dépôt de brevet sur les embryons humains. Pour la première fois dans l’histoire du CDC, la nomination de son directeur devra être confirmée par le Sénat, suite à une modification de la loi de finance.
Aseem Malhotra, “no retreat, no surrender”
Cardiologue britannique de renom, le Dr Aseem Malhotra a été choisi par le président Trump pour être son conseiller pour les questions de santé.
Aseem Malhotra est considéré comme l’un des experts mondiaux dans le domaine de l’Evidence‑Based Medecine (EBM), médecine qui tient compte à la fois des connaissances scientifiques et de l’expertise clinique, mais aussi des spécificités et préférences des patients. Auteur et relecteur pour de nombreuses publications scientifiques renommées, le Dr Malhotra a également été l’un des plus jeunes conseillers santé du gouvernement britannique. En plus de la cardiologie, il s’intéresse particulièrement à la prévention des maladies coronariennes, au surpoids, à l’obésité et au diabète de type 2.
Fervent pratiquant et défenseur d’un mode d’alimentation et de vie sains, il est le producteur d’un documentaire choc intitulé First Do No Pharm. Il y dénonce l’influence néfaste de Big Pharma, qu’il accuse d’avoir détourné le secteur de la santé pour son propre profit. Il met en garde contre l’usage excessif de médicaments, identifiés comme la troisième cause de décès à travers le monde, derrière les maladies cardiovasculaires et le cancer. Il exhorte la population à reprendre la responsabilité de sa propre santé, en insistant sur l’importance de l’alimentation (réduction de la consommation d’aliments ultra‑transformés et de sucre) et d’une bonne hygiène de vie. Le Dr Aseem Malhotra a présenté le régime qu’il recommande, inspiré par l’alimentation des villageois de Pioppi, dans le sud de l’Italie, dans son livre The Pioppi Diet. Un ouvrage qui a suscité des polémiques dans la sphère médicale orthodoxe, tout comme ses deux autres ouvrages, The 21‑Day Immunity Plan et A Statin‑Free Life.
En rejoignant l’équipe de Trump à la Maison Blanche, il a promis de s’attaquer à la première cause de mortalité aux USA, les maladies cardiovasculaires. Il veut sensibiliser les Américains au problème de la malbouffe et la combattre, au même titre que le tabac. Il préconise de bannir des écoles et des hôpitaux les aliments ultra‑transformés et voudrait instaurer une taxe sur les snacks sucrés, sodas et crèmes glacées. Il sera donc un rouage essentiel de “la plus grande opération que le pays ait jamais connue contre les mauvaises habitudes alimentaires des Américains” annoncée par Trump.
C’est un drame personnel, le décès prématuré de son père suite à l’injection à ARNm, qui a ouvert les yeux du cardiologue britannique sur les scandales liés au covid et aux injections géniques. Son père, lui‑même médecin connu et respecté, est décédé en juillet 2021 d’une crise cardiaque, alors qu’il n’avait pas d’antécédents pouvant l’expliquer. Suite à l’autopsie et à des discussions avec des collègues chercheurs, Aseem Malhotra découvrit les risques cardiovasculaires liés aux injections, risque que ses collègues avaient choisi de taire, pour ne pas perdre le financement de leurs recherches par Big Pharma. Examinant alors les chiffres officiels du gouvernement britannique, il a alors lui‑même constaté une augmentation de 14000 cas d’arrêts cardiaques suite au déploiement des “vaccins” en 2021, par rapport à l’année précédente[44].
Réalisant que son père avait été “victime du plus grand crime en col blanc de l’histoire”[45], Aseem Malhotra a juré de se battre “pour une justice sanitaire universelle, jusqu’à mon dernier souffle”[46]. Et pour honorer la mémoire de son père, il a fait la promesse: “ta disparition prématurée ne sera pas vaine et nous obtiendrons justice pour ceux qui ont souffert inutilement d’une injection d’ARNm qui n’aurait jamais dû être approuvée et certainement pas administrée sans consentement éclairé”[47].
Ami proche de Robert Kennedy Jr, Aseem Malhotra n’aura de cesse de réclamer que “les vaccins covid à ARNm soient suspendus dans le monde entier et que les personnes blessées par le vaccin reçoivent une aide réelle”[48]. Laissons‑lui le mot de la fin, une référence à la loi de Sparte, qu’il martèle en clôture de ses messages sur X: “no retreat, no surrender” – “ni retraite, ni reddition”. Puissent Robert Kennedy Jr et sa nouvelle équipe incarner cette devise.
En tant que groupe international de politiciens et professionnels qualifiés, nous sommes gravement préoccupés par les effets des vaccins à ARNm modifiés contre le COVID-19 sur nos populations et appelons à leur suspension immédiate.
ENTRETIEN – Le bras de fer judiciaire entre la Commission européenne et les citoyens de l’Union se durcit. Condamnée en juillet 2024 par le Tribunal de l’Union européenne pour son opacité dans la gestion des contrats d’achat de vaccins, la Commission a formé un pourvoi devant la Cour de justice de l’UE, assorti d’un référé visant à suspendre partiellement l’exécution d’un jugement obtenu par Me Arnaud Durand au nom de 2089 requérants. Depuis octobre, cette procédure inédite a connu de nombreux rebondissements : l’exécutif européen refuse la divulgation des contrats, en violation d’une décision de justice devenue exécutoire, et bafoue le principe du contradictoire, en ne communiquant pas les arguments qu’il invoque pour empêcher des milliers de citoyens de se joindre à l’affaire, dénonce l’avocat. Paradoxalement, la Commission a exigé un droit de réplique aux conclusions en réponse déposées en décembre, signe, selon lui, que « nos arguments ont manifestement été perçus comme menaçants ». Enfin, ce 4 février, le juge des référés a rejeté les « arguments classiques » de la Commission, mais néanmoins estimé qu’il revenait à la CJUE d’avoir le dernier mot sur la divulgation de l’identité cachée des négociateurs des contrats. Dans cet entretien, Me Arnaud Durand revient sur ces derniers développements et analyse les enjeux d’un affrontement judiciaire qui touche au cœur même des principes de transparence au sein de l’Union européenne. À l’heure même où la Commission a annoncé la signature d’un nouveau contrat de vaccins Covid-19… dont elle n’a pas dévoilé toute la teneur.
Epoch Times : Le 24 janvier, la Commission a passé un marché avec le laboratoire américain Moderna pour l’achat groupé de vaccins contre le Covid-19 : jusqu’à 146 millions de doses de vaccins ARN messager. Avant d’aborder la procédure en pourvoi, quel regard portez-vous sur ce dossier ?
Me Arnaud Durand : Lors de notre entretien du 6 octobre 2024, je dénonçais la dérive de la Commission von der Leyen dans son opacité toujours plus marquée après la décision rendue par le tribunal de l’Union européenne le 17 juillet 2024, la condamnant pour son manque de transparence dans l’affaire des contrats d’achat de vaccins Covid-19. Aujourd’hui la Commission européenne réitère. En témoigne la non-divulgation de ce contrat conclu avec Moderna pour près d’une dose par habitant pour les seize États membres impliqués (Belgique, Espagne, France, etc.).
À ce jour, les conditions financières de cet accord sont inconnues. Par l’intermédiaire de son autorité HERA “de préparation et de réaction en cas d’urgence sanitaire”, la Commission tente de rassurer en mettant en avant l’absence de clause de minimum d’achat. Cependant, la signature d’un contrat suppose en principe des engagements notamment financiers de la part des États signataires. Dès lors, plusieurs questions se posent : ce contrat est-il équilibré ? Confère-t-il à Moderna des avantages excessifs au détriment des contribuables européens ? À ce stade, la Commission cache ces informations.
Je rappelle que la conclusion des précédents contrats d’achat Covid-19, pour un montant total estimé à 71 milliards d’euros, avait, à l’époque, soulevé de sérieux doutes quant à l’équité des négociations. En effet, l’augmentation des commandes de doses s’était accompagnée d’une hausse des prix, ce qui est contraire aux principes économiques usuels, qui voudraient au contraire que des commandes massives entraînent une baisse des coûts unitaires.
De plus, la Commission avait accepté des prix d’achat supérieurs à ceux négociés par d’autres États, et ce, pour des injections dont les données d’étude étaient à la fois parcellaires et fragiles. L’histoire a montré qu’en fin de compte, ces produits n’ont pas du tout tenu leurs promesses.
Ce nouveau manquement à la transparence va donc une fois de plus à l’encontre des principes fondamentaux de l’Union européenne. Il est d’autant plus préoccupant qu’il contredit directement la volonté exprimée par le Parlement européen lui-même, qui avait adopté, le 12 juillet 2023, une résolution sans équivoque dénonçant l’opacité des accords passés par la Commission.
Ce texte demandait que « les contrats soient conclus et que les négociations sur les prix soient menées de manière transparente ». Pourtant, la Commission persiste dans son attitude de dissimulation, à l’encontre de cette résolution du Parlement européen. Une telle attitude ne peut qu’éroder davantage la confiance des citoyens.
À l’occasion du nouveau contrat avec Moderna, la presse française a rapidement rappelé les accusations concernant le manque de transparence sur la passation de ces marchés à l’époque. TF1 a d’ailleurs renvoyé ses lecteurs vers son article traitant de la condamnation de la Commission pour ces faits en juillet dernier. Qu’avez-vous pensé du traitement médiatique sur la signature de ce nouveau contrat ?
Lorsque l’on constate qu’un média grand public comme TF1 commence à accorder du crédit aux demandes de transparence contre la Commission européenne, demandes qui étaient encore récemment qualifiées de « complotistes », on peut raisonnablement penser que le vent commence à tourner.
Contrairement à d’autres médias, je me réjouis qu’ils aient eu la loyauté de renvoyer leurs lecteurs vers l’article annonçant la condamnation de la Commission européenne que nous avons obtenue en juillet dernier.
Le manque de transparence de l’exécutif européen ne repose pas sur des spéculations fantaisistes, mais bien sur des griefs que le tribunal de l’UE a reconnus en donnant raison aux 2089 requérants que je représente. L’arrêt rendu par le Tribunal marque un tournant dans le débat public, légitimant enfin des interrogations trop longtemps moquées et balayées d’un revers de main par les prétendus “fact-checkers”.
Toutefois, je reste prudent quant au traitement médiatique de ces affaires. Ce frémissement, bien que notable, ne garantit pas une couverture impartiale et approfondie. La couverture presse de juillet dernier en est d’ailleurs un bon exemple : il minimisait l’impact de cette décision de justice en titrant que la Commission aurait été juste « épinglée ». Or, en réalité, elle a bel et bien été condamnée.
L’article de TF1 se conclut en rappelant que la plainte pénale déposée en avril 2023 par le lobbyiste belge Frédéric Baldan a été jugée irrecevable par la justice belge en janvier, ce qui, selon la presse, a consécutivement frappé d’irrecevabilité toutes les autres plaintes déposées dans son sillage, celles de ceux invités à se joindre à cette procédure mais aussi celles déposées à l’initiative des États membres. Frédéric Baldan a accusé la justice « d’organiser l’impunité » d’Ursula von der Leyen. Quelle analyse faites-vous de ce jugement ?
Bien avant que la justice n’ait statué qu’en début 2025, j’avais mi-2024 prévenu les lecteurs de ma newsletter “DejaVu” qu’une telle plainte, déposée par des personnes tierces devant la justice belge, était certainement vouée à l’échec, faute d’être juridiquement recevable.
En effet, dans le type de procédure engagée, seule une victime directe de l’infraction peut agir en réparation du dommage. C’est le cas aussi bien en droit belge qu’en droit français.
Dans ces conditions, il est ici difficile de désapprouver la justice belge qui a rendu une décision tout simplement conforme au droit applicable en ce qui concerne les plaignants personnes physiques.
Certaines associations, dans des conditions bien précises, pourraient, elles, être jugées recevables. Il appartient maintenant à ces associations d’agir utilement.
En tant qu’avocat intervenant sur de grandes causes, je crois en la nécessité d’éclairer les justiciables sur les perspectives de chaque procédure. Bien sûr, il existe un aléa devant la Justice, a fortiori sur les causes sensibles. En revanche, j’ai toujours refusé de faire exprès de me tromper pour ensuite blâmer une décision prétendument mauvaise, en réalité logique, rendue par un juge.
Toutefois, dans l’affaire belge, on ne comprend pas bien pourquoi les États membres de l’Union européenne, qui avaient également déposé plainte, ont été eux aussi jugés irrecevables. J’espère que ces États-membres se reprendront afin de faire valoir leur droit à un procès, soit en déposant une nouvelle plainte, soit en engageant un recours devant la Cour de cassation belge à ce stade.
Le 17 juillet dernier, le Tribunal de l’Union européenne a condamné la Commission pour son manque de transparence concernant les contrats d’achat de vaccins et l’identité des négociateurs impliqués. Face à cette décision, le 27 septembre 2024, la Commission a formé un pourvoi devant la Cour de justice de l’Union européenne (CJUE), qu’elle a assorti d’un référé en mesures provisoires. Le 4 février, vous avez reçu la décision du juge des référés. Quelle est-elle ?
Ce pourvoi devant la CJUE, seule voie de contestation possible pour la Commission, ne vise pas à remettre en cause les faits du dossier, mais plutôt la manière dont les juges du Tribunal de l’UE ont appliqué le droit. Il s’agit donc d’une procédure comparable à un pourvoi en cassation en France : la Cour de cassation ne rejuge pas les faits, mais vérifie si la règle de droit a été correctement appliquée, en s’appuyant sur la jurisprudence.
Parallèlement, la Commission avait donc introduit un référé afin de suspendre l’exécution de l’arrêt du Tribunal, mais uniquement sur la divulgation des noms des négociateurs, sans que l’obligation de publier les contrats d’achat fortement caviardés ne soit suspendue.
L’objectif de cette démarche de la Commission était d’obtenir en urgence la suspension de l’exécution de la décision du 17 juillet 2024, devenue exécutoire en septembre.
Thomas von Danwitz, juge des référés, dans sa décision rendue le 4 février 2025, n’a pas retenu les arguments classiques de la Commission mais a opté pour une approche pragmatique, à savoir la “mise balance des intérêts” : tant que la CJUE ne s’est pas prononcée sur le pourvoi, divulguer les noms des négociateurs serait irréversible. Il a donc suspendu la divulgation des noms jusqu’à la décision finale, non pas en accordant quelque crédit que ce soit aux arguments juridiques premiers de la Commission, mais exploitant cet outil très élastique qu’est la “mise en balance des intérêts”, sorte de “voiture-balai” des intérêts des parties lorsque les outils juridiques classiques sont insuffisants pour prendre une décision dans tel ou tel sens.
Il est vrai que si le pourvoi de la Commission devait in fine être jugé fondé par la Cour, il serait en pratique difficile de revenir en arrière une fois ces informations rendues publiques.
Gageons que le Parlement européen, expression de la démocratie au sein de l’Union européenne, qui a formellement demandé la divulgation de l’identité des négociateurs et de leurs déclarations de conflits d’intérêts, ait l’oreille de la Cour au fond de l’affaire.
Si le référé introduit par la Commission portait exclusivement sur l’identité des négociateurs, pourquoi n’a-t-elle toujours pas divulgué les contrats d’achat des vaccins avec les différents laboratoires ?
La Commission n’a pas introduit de référé concernant la divulgation des contrats, probablement parce qu’elle savait ses arguments encore moins solides que ceux avancés pour dissimuler l’identité des négociateurs. Cela en dit long sur la fragilité juridique de sa position : la Commission sait qu’elle ne pouvait justifier son refus de transparence devant le juge des référés sans courir un risque considérable de voir son recours rejeté.
Le 18 octobre 2024, j’ai officiellement sommé la Commission d’exécuter la décision du Tribunal, qui l’obligeait à divulguer ces documents. À ce jour, elle continue de faire la sourde oreille en utilisant divers prétextes fantaisistes. En réalité, sa tactique repose sur l’idée de jouer la montre, en espérant qu’un arrêt favorable de la Cour lui permette de ne jamais divulguer ces contrats.
Le mécanisme d’exécution des décisions au sein de l’Union européenne est en effet particulier : par principe, le juge de l’Union ne peut pas contraindre directement une administration à exécuter une décision de justice. Cependant, la Commission est tenue de respecter les décisions de Justice, faute de quoi les intéressés peuvent engager un nouveau recours, qu’ils sont pratiquement certains de gagner à nouveau, puisque visant uniquement à faire respecter un arrêt déjà rendu.
Au-delà des détails d’exécution, ce refus de la Commission européenne de se conformer à… une décision de justice montre à quel point cette commission n’est pas attachée au principe de transparence.
Et cela, cet attachement premier de la Commission européenne à des intérêts partisans voire mercantiles, les citoyens de l’Union s’en rendent de mieux en mieux compte.
Pouvez-vous faire un état des lieux de cette procédure en pourvoi en précisant son calendrier ?
Le 10 décembre 2024, nous avons conclu au fond contre le pourvoi de la Commission. Les arguments que nous avons développés dans l’intérêt des 2 089 requérants ont manifestement été perçus comme suffisamment menaçants pour inquiéter la Commission, puisqu’elle a demandé à la Cour l’autorisation d’y répliquer. Ce qu’elle devra faire d’ici une quinzaine de jours.
En tant que défendeurs contre le pourvoi nous serons amenés à répondre à notre tour, ce qui nous conduira aux alentours du mois d’avril 2025. L’affaire devrait donc être jugée par la CJUE d’ici début 2026.
Par ailleurs, le 11 décembre 2024, 3782 citoyens de l’Union européenne ont introduit une demande d’intervention volontaire pour se joindre à la procédure en cours afin de soutenir les requérants. La Commission européenne s’y est opposée, mais ni le Tribunal ni la Commission n’ont jugé bon de communiquer ce mémoire en opposition aux requérants. Ne s’agit-il pas d’une violation du principe du contradictoire ?
Oui, c’est une violation manifeste du droit à un procès équitable : chaque partie doit évidemment pouvoir connaître des arguments de son adversaire avant qu’une décision ne soit rendue. Pourtant, dans ce cas précis, nous ne connaissons toujours pas les arguments que la Commission a avancé dans le but d’empêcher la participation de milliers de citoyens européens au dossier.
Cette situation est profondément problématique sur le plan du droit. Il est inouï que la Commission européenne, institution censée défendre l’intérêt général, s’oppose à la participation de citoyens européens tout en les empêchant de connaître des arguments avancés contre eux.
En fonction de la décision qui sera rendue, nous déterminerons si un recours ou une autre action légaliste s’impose pour contester cette atteinte évidente au droit à un procès équitable, en serait-ce que pour les requérants eux-mêmes qui se verraient priver de l’intervention en leur soutien de plus de 3000 intervenants.
Ce que doit maintenant comprendre la Commission européenne avec les milliers de citoyens que je défends, c’est qu’elle ne peut plus agir subrepticement comme elle a trop pris l’habitude de le faire dans les affaires où les requérants agissent isolément. En première instance, elle nous avait tendu tous les pièges procéduraux possibles et imaginables. Cela n’a pas fonctionné. La Commission ferait mieux de se ranger à la transparence légitime réclamée par les citoyens de l’Union. Qu’elle comprenne bien : nous ne lâcherons rien.
Pourquoi la Commission tient-elle tant que cela à maintenir confidentiels l’identité des négociateurs ainsi que leurs potentiels conflits d’intérêts selon vous ?
Il est depuis peu de notoriété publique que l’une des principales négociatrices des contrats d’achat de vaccins était Mme Ursula von der Leyen elle-même. De manière manifestement solitaire, la Présidente de la Commission a tenu des négociations avec Pfizer.
Au-delà de l’article du New York Times évoquant les SMS où Mme von der Leyen aurait traité directement avec le PDG du fabricant Pfizer, cette affaire a entre-temps été confirmée par la Cour des comptes européennes qui a dénoncé, en tête d’un rapport spécial, n’avoir « reçu aucune information sur les négociations préliminaires pour le plus important contrat de l’UE ».
La question est donc simple : les négociateurs étaient-ils exempts de tout conflit d’intérêts, comme l’affirme la Commission ?
Actuellement, la seule réponse que nous a fournie la Commission est une liste de déclarations de conflits d’intérêts… entièrement anonymisée et… ne mentionnant l’existence d’aucun conflit d’intérêts.
Il est donc impératif, une fois ces documents obtenus, de vérifier si Mme von der Leyen y figure bien, compte tenu de son rôle révélé depuis dans ces négociations.
Et plusieurs éléments suscitent des interrogations quant à de potentiels conflits d’intérêts impliquant Mme von der Leyen. D’une part, son propre mari est directeur chez Orgenesis, une société spécialisée dans l’ARN messager en matière de Covid-19. D’autre part, Mme von der Leyen elle-même a acquis des options d’achat dans cette entreprise, ce qui pose directement la question d’un conflit d’intérêts majeur.
Quand on regarde le caractère particulièrement farfelu des arguments de la Commission, on se rend compte qu’en réalité, c’est très probablement à cause de sa présidente que la Commission redoute l’exécution de sa condamnation du 17 juillet 2024.
Comment la Commission justifie-t-elle ses positions dans ses conclusions ?
La Commission européenne cherche aujourd’hui à clore le débat en affirmant que l’objectif de transparence et de vérification des conflits d’intérêts aurait déjà été atteint par la publication des déclarations caviardées.
Cette affirmation est d’une absurdité manifeste. Comment prétendre vérifier des conflits d’intérêts lorsque les noms des signataires sont cachés ? Sans connaître l’identité des négociateurs, il est tout simplement impossible de procéder à la moindre vérification.
Face à cette incohérence, la Commission tente de rassurer en affirmant qu’il ne faut pas s’inquiéter, qu’elle a déjà vérifié en termes de conflits d’intérêts. Mais cette demande de confiance aveugle et naïve, nous la refusons fermement. Nous ne croyons pas la Commission, le Parlement européen ne la croit pas non plus, et, plus largement, personne ne semble convaincu, puisque les appels à la transparence se multiplient. En enjoignant les citoyens à une sorte de “circulez, il n’y a rien à voir”, la Commission a attisé le besoin de transparence.
Dans ses conclusions, l’exécutif européen avance que le contrôle démocratique de l’identité des négociateurs ne relève pas d’un but d’« intérêt public ».
La Commission a effectivement saisi la Cour de justice de l’Union européenne de cette question au fond dans son pourvoi. Elle en avait aussi saisi le Tribunal en première instance, puis le juges des référés. Tous deux ont écarté cet argument.
La Commission tentait d’affirmer que l’objectif poursuivi n’était pas d’intérêt public, mais cette position était intenable… aux yeux mêmes de la Commission qui se contredisait à la phrase suivante en indiquant que cette vérification des conflits d’intérêts était bien dans « l’intérêt public ».
Une contradiction aussi flagrante revenait à anéantir son propre argumentaire. Nous avons donc rappelé à l’encontre de la Commission qu’en droit, des arguments contradictoires équivalent à une absence d’arguments.
Dans son pourvoi, la Commission se justifie également en arguant que la divulgation de l’identité de ces négociateurs pourrait entraîner « des attaques à leur intégrité physique ainsi que du harcèlement, notamment par des supporteurs des “théories du complot“, dont le nombre n’est pas négligeable en lien avec la pandémie de Covid-19 ». Pourtant, bien des prédictions jugées « complotistes » à l’époque se sont révélées vraies. Dernier exemple en date : ce 25 janvier, on apprend que la CIA elle-même considère comme probable l’hypothèse d’une fuite de laboratoire à Wuhan comme origine du Covid-19, hypothèse elle aussi qualifiée autrefois avec virulence de théorie complotiste. Que cela vous inspire-t-il ?
Tout d’abord, je reviens une fois de plus sur la résolution adoptée par le Parlement européen le 12 juillet 2023, qui recommande explicitement que « les négociateurs de contrats avec des entreprises pharmaceutiques déclarent leurs intérêts financiers et autres » et, dans une clarté absolue, recommande également de « rendre ces déclarations publiques ». Mais la Commission continue de dissimuler ces quelques identités, pour un coût exorbitant en termes de finance comme en matière de confiance.
Dans ce contexte, sous-entendre que les requérants seraient « complotistes » n’est pas seulement décalé, mais c’est aussi malhonnête. Les personnes que je représente sont des citoyens légalistes ayant obtenu en justice la condamnation de la Commission européenne pour son opacité.
Au-delà, l’exemple de la fuite probable du laboratoire concernant l’origine du virus est un exemple particulièrement révélateur : à l’époque, nous avions assisté à une véritable mascarade visant à fermer tout débat et à mettre en garde contre les “dangereux complotistes” posant des questions à ce sujet.
Une délégation de l’OMS, censée enquêter sur l’origine du virus, avait dans son rapport à l’époque conclu qu’elle n’avait toujours pas identifié l’hôte naturel du SARS-CoV-2. Soyons sérieux : comment prétendre aboutir à des conclusions crédibles lorsque l’on refuse d’explorer sérieusement la piste d’une origine artificielle ?
Il est temps de réhabiliter le pangolin et la chauve-souris, ces boucs émissaires érigés en coupables sans défense !
Derrière cette absurdité se cache un problème plus vaste. La Commission européenne n’est qu’un rouage d’un système dans lequel des institutions comme l’OMS ont cherché à imposer un prétendu consensus, pourtant absurde, évacuant toute hypothèse dérangeante au profit d’une pensée officielle.
Pourquoi le “bon chemin” argué par ces instances est-il pratiquement toujours en faveur des intérêts financiers des fabricants de médicaments ? Pendant la crise, tout semblait cadré pour éviter toute mise en cause de ce laboratoire installé en Chine avec le concours de… Français et d’Américains.
Si l’hypothèse, désormais plausible, d’une fuite de laboratoire venait à être définitivement confirmée, les implications seraient colossales en termes de responsabilités civiles, pénales et politiques à l’échelle internationale.
Les nanoparticules lipidiques (LNP), utilisées pour délivrer l’ARNm du vaccin Covid-19 aux cellules du corps, ne restent pas au point d’injection – elles circulent dans tout le corps et atteignent les organes vitaux, y compris le cœur, selon un nouvel article publié dans Nature Biotechnology.
Les résultats “suggèrent un mécanisme potentiel par lequel les vaccins ARNm à base de LNP pourraient contribuer aux complications cardiaques signalées”, notamment la myocardite, écrivent les auteurs de l’étude.
Publiées dans l’une des revues scientifiques les plus prestigieuses, les conclusions de l’étude contredisent les affirmations des responsables de la santé publique et des scientifiques lors du déploiement du vaccin Covid-19, selon lesquelles les LNP étaient sûres parce qu’elles ne se déplaçaient que vers des sites ciblés spécifiques dans le corps.
Un nouveau type de test
Selon les auteurs, il n’existe pas de technologie adéquate pour déterminer où les transporteurs de nanoparticules, telles que les nanoparticules lipidiques, aboutissent dans l’organisme après avoir été administrés par injection intramusculaire, en particulier pour les médicaments tels que les vaccins, qui contiennent de faibles doses de particules.
Dans cette étude, les auteurs ont mis au point une technologie expérimentale permettant de déterminer où les différents vecteurs de nanoparticules, y compris les LNP, se retrouvent dans l’organisme après une injection intramusculaire. Ils ont testé cette technologie sur des souris.
Les chercheurs ont constaté que même à des doses extrêmement faibles, les LNP portant l’ARNm de la protéine Spike du SARS-CoV-2 atteignaient les organes vitaux. Elles ont atteint le tissu cardiaque et provoqué des modifications cellulaires ou tissulaires.
Les LNP injectant l’ARNm Covid-19 circulent de manière systémique et sont absorbées par les organes vitaux, ce qui entraîne la production de la protéine Spike toxique à l’échelle du corps”, a écrit Nicolas Hulscher, épidémiologiste et administrateur de la Fondation McCullough, sur Substack.
Selon Karl Jablonowski, chercheur principal à l’ONG Children’s Health Defense, l’idée fausse la plus répandue au début du déploiement du vaccin Covid-19 était que les nanoparticules lipidiques “restaient dans les cellules musculaires“.
Cet article illustre parfaitement que ces affirmations sont fausses, puisqu’on y trouve des LNP injectées par voie intramusculaire dans le cœur, le foie, les reins, la rate, la tête et “tous les ganglions lymphatiques analysés”, a déclaré M. Jablonowski.
La recherche aurait dû être effectuée avant la vaccination de masse, et non après
Selon l’étude, plus de 30 nouveaux médicaments – y compris des outils d’édition du génome, des médicaments à base d’ARNm et de protéines – ont été approuvés par la Food and Drug Administration des États-Unis et l’Agence européenne des médicaments.
Mais les développeurs de médicaments sont confrontés à un défi majeur dans l’application clinique de ces outils : comment s’assurer que les médicaments n’atteignent que les cellules qu’ils ciblent?
Pour cibler des cellules spécifiques, les médicaments utilisent des “nanocarriers” (nanoporteurs) – de minuscules particules capables de transporter un médicament dans tout l’organisme – sélectionnés pour leur capacité différentielle à cibler des types de cellules particuliers. Différents types de nanoporteurs, notamment les liposomes, les vecteurs viraux et les LNP, les nanoparticules lipidiques, ont été utilisés dans les vaccins Covid-19.
Les nanoporteurs sont dotés d’un revêtement qui les rend stables et les aide à atteindre les cellules cibles. Cependant, lorsqu’ils sont introduits dans l’organisme, ils subissent des modifications qui rendent leur fonction plus imprévisible.
Selon M. Jablonowski, ces changements sont dus au fait que des protéines se lient aux nanoparticules et influencent leur destination et leur mode d’interaction.
Cette interaction avec les protéines de l’environnement est inéluctable et constitue une source d’incertitude critique”, a-t-il déclaré.
C’est ce qui fait des LNP un outil de thérapie génique risqué, généralement utilisé uniquement par des personnes qui “luttent pour leur vie et sont prêtes à accepter les effets indésirables potentiels résultant du fait que les LNP atteignent la mauvaise cible”, a déclaré M. Jablonowski.
Une personne en bonne santé ne prendrait pas un risque aussi important pour un bénéfice aussi minime.
Technologie de précision
Les chercheurs ont entrepris de mettre au point une technologie appelée “Single Cell Precision Nanocarrier Identification”, conçue pour cartographier et quantifier l’endroit où aboutissent les nanoporteurs injectés dans une souris.
Leur technologie utilise l’apprentissage automatique pour analyser les données d’images, ce qui permet de quantifier avec précision l’emplacement des nanoparticules au niveau de l’organe, du tissu et de la cellule unique dans l’ensemble du corps.
Ils l’ont spécialement conçue pour mesurer les faibles doses de médicaments généralement présentes dans les vaccins. Ils l’ont ensuite testée sur plusieurs nouveaux types de médicaments et ont pu identifier avec succès la localisation des nanoparticules dans l’ensemble du corps d’une souris.
Après avoir injecté dans le muscle une LNP contenant l’ARNm de la protéine de pointe du SRAS-CoV-2, les chercheurs ont détecté l’ARNm et la protéine de pointe dans le foie, la rate, les poumons, le cœur, la tête et les reins de la souris.
Ces résultats ont des “implications directes pour la traduction clinique” des médicaments, ont-ils déclaré.
Risque cardiaque confirmé
“Notre découverte de changements dans l’expression des protéines immunitaires et vasculaires dans le tissu cardiaque après l’administration de l’ARNm LNP spike correspond aux rapports de myocardite et de péricardite dans un sous-ensemble d’individus ayant reçu des vaccins ARNm”, écrivent-ils.
Au 27 décembre 2024, 27 357 cas de myocardite et de péricardite avaient été signalés au Vaccine Adverse Event Reporting System (VAERS) aux États-Unis, dont 20 846 cas attribués à Pfizer, 5 952 cas à Moderna et 482 cas au vaccin de Johnson & Johnson.
La principale limite de la technologie Single Cell Precision Nanocarrier Identification est qu’elle ne peut pas être utilisée sur des sujets vivants. Cela signifie qu’il n’y a toujours pas de moyen de suivre efficacement l’évolution des LNP chez les êtres humains vivants.
“Cette technologie ne peut pas fournir les informations dynamiques et longitudinales qu’offrent les méthodes utilisées sur les animaux vivants, telles que la TEP ou l’imagerie par bioluminescence”, a déclaré M. Jablonowski.
Les auteurs de l’étude ont déclaré que des recherches supplémentaires étaient nécessaires pour déterminer si des effets similaires se produisent chez l’homme et si les changements moléculaires qu’ils ont trouvés dans l’organisme des souris sont liés à des symptômes cliniques.
Action urgente pour les agences de santé
Commentant la déclaration des auteurs selon laquelle les effets similaires probables sur les humains devraient être explorés dans des travaux futurs, Jablonowski a déclaré :
Tous les organismes de réglementation des vaccins dans le monde qui ont approuvé les LNP pour une distribution de masse devraient se repentir de leur décision hâtive et complaisante, car ce “travail à réaliser par la suite”, aurait dû l’être bien avant l’approbation.
Aux États-Unis, le processus d’approbation des vaccins dure dix ans. Parmi tous ceux qui ont été approuvés jusqu’à présent, aucun n’est réellement sûr, mais le processus permet d’éliminer certains des vaccins les plus dangereux. Cinq ans après sa création, la plateforme vaccinale à ARNm Covid-19 ressemble de plus en plus à l’un des plus dangereux.”
Hulscher est d’accord, écrivant que “des études de biodistribution auraient dû être réalisées AVANT la “vaccination” de masse de la population mondiale”. Il demande que les “injections invasives de thérapie génique” soient immédiatement retirées du marché.
Ce petit guide donne des informations pratiques et théoriques sur les vaccins infantiles obligatoires et recommandés. Il est destiné aux parents inquiets des risques de la vaccination. L’État français a rendu obligatoire 11 vaccins (depuis 2018) pour l’entrée dans toute “collectivité d’enfants” (crèche, garderie, école, garderie, colonies de vacances). L’instruction est obligatoire à 3 ans. Beaucoup de parents sont désemparés face au dilemme de la vaccination face à la santé de leur enfant. Il a été réalisé par deux collectifs de citoyens et soignants de Paris et d’Aix-en-Provence, qui défendent la sécurité des vaccins et la liberté vaccinale.
Ils sont en train de débarquer. Après les vaccins à ARN messager (ARNm), voici les vaccins à ARN messager auto-amplifiant (ARNma). Depuis avril 2024, ils sont utilisés en France pour la vaccination des poules et des canards d’élevage contre la grippe aviaire. Le mois dernier, c’est l’Agence européenne du médicament qui a donné sa bénédiction au premier vaccin humain à ARNma contre le Covid. Annoncés sûrs et efficaces, ces produits ont plutôt de quoi soulever des inquiétudes.
◆ Encore le Covid ?!
Qui, de nos jours, se vaccine encore contre le Covid-19 ? On peut sérieusement se le demander. Les campagnes d’incitation de l’Assurance maladie, en tout cas, se poursuivent. Depuis l’automne, le site Ameli recommande aux personnes à risque de forme grave de se faire injecter la nouvelle version du vaccin Comirnaty de Pfizer/BioNTech adaptée au variant JN.1, celui qui dominerait actuellement en France et dans le monde.
Pendant ce temps, et presque en douce, l’Agence européenne du médicament (EMA) a donné un avis favorable, le 12 décembre dernier, au premier vaccin à ARN messager auto-amplifiant (ARNma) contre le SARS-CoV-2.
◆ L’alerte de Jean-Marc Sabatier sur ces nouveaux vaccins
Le sujet de la vaccination anti-Covid est donc loin d’être enterré pour les autorités de santé. Quant à celui des injections à ARNma, il ne fait (malheureusement) que commencer.
Le 29 février 2024, nous avions publié une interview du Dr Jean-Marc Sabatier, directeur de recherche au CNRS, spécialisé en biologie cellulaire et en microbiologie. Il tirait la sonnette d’alarme sur les dangers potentiels des nouveaux vaccins à ARNm en développement, notamment ceux à ARNm auto-amplifiant (ou auto-répliquant) et trans-amplifiant, dont il expliquait les mécanismes.
⇒ Lire notre article du 29/02/2024 :
◆ Le Kostaive à ARNma, déjà autorisé au Japon
À l’époque, le Japon venait d’approuver le premier vaccin à ARNma contre le SARS-CoV-2, l’ARCT-154, également le premier vaccin humain utilisant cette technologie à être approuvé dans le monde. Vendu sous le nom commercial de Kostaive (dont le principe actif est le zapomeran), ce vaccin a été mis au point par la société états-unienne Arcturus Therapeutics, basée à San Diego en Californie.
Un an plus tard, c’est donc au tour de l’Agence européenne du médicament de lui donner son feu vert, sans qu’on ne sache trop ce qui a motivé l’avis favorable du comité des médicaments à usage humain (CHMP) de l’EMA, le document publié étant particulièrement succinct. Même si le dossier doit encore passer entre les mains de la Commission européenne pour être définitivement validé, il y a peu de chance que celle-ci aille à l’encontre de l’agence. L’autorisation de mise sur le marché est donc quasiment actée.
◆ Un vaccin efficace, avec des effets indésirables légers, selon l’EMA
Selon l’avis du CHMP, « le bénéfice de Kostaive en primo-vaccination contre le Covid-19 a été démontré dans une vaste étude dans laquelle les adultes ont reçu soit deux doses de Kostaive, soit un placebo. Par rapport au placebo, la vaccination avec Kostaive a entraîné une réduction de la proportion de patients ayant développé un Covid-19 symptomatique entre une semaine et trois mois après la deuxième dose de vaccin. » Une autre étude plus petite aurait, par ailleurs, montré l’efficacité de Kostaive en tant que vaccin de rappel, suite à une primovaccination faite avec un autre vaccin.
Le CHMP indique également que « les effets indésirables les plus couramment observés sont les réactions au site d’injection (douleur et sensibilité), l’arthralgie, la myalgie, les maux de tête, les vertiges, la fatigue, les frissons et la pyrexie ».
◆ Les vaccins à ARNm se sont pourtant révélés peu sûrs et peu efficaces
Si l’on se fie à cet avis, le nouveau vaccin Kostaive serait donc à la fois efficace et sans danger, tout comme le sont toujours officiellement les vaccins à ARN messager déjà sur le marché, alors qu’ils n’ont objectivement prouvé ni leur efficacité ni leur sécurité.
On ne compte plus, en effet, les vaccinés ayant développé un ou plusieurs Covid symptomatiques, parfois sévères, malgré leur soi-disant protection vaccinale. Quant aux effets indésirables graves, parmi lesquels on trouve de nombreux cas de décès, les chiffres de pharmacovigilance et plusieurs associations de victimes (Verity France, Où est mon cycle ?, AAVIC Team…) sont là pour en témoigner.
◆ Une technologie jamais remise en question par les autorités
Ce qui choque le plus dans cet avis de l’EMA est que jamais n’est remise en question la technologie de l’ARNm, sur laquelle on peut pourtant avoir de sérieux doutes.
Rappelons brièvement que l’ARNm contenu dans les vaccins anti-Covid code pour la protéine Spike du virus SARS-CoV-2. Injecté, cet ARNm est censé pénétrer dans nos cellules pour y être lu et traduit en acides aminés, afin que nos cellules fabriquent elles-mêmes cette protéine Spike, qui sera ensuite détectée par notre système immunitaire pour fabriquer les antigènes correspondants.
◆ Les erreurs de lecture problématiques de l’ARNm vaccinal
Or, comme le soulignait Jean-Marc Sabatier dans notre article cité plus haut, « cette technologie n’est pas du tout maîtrisée, on en a eu confirmation avec l’étude publiée dans Nature le 6décembre 2023, montrant des problèmes de lecture et de traduction de l’ARNm vaccinal en protéines ».
Plus précisément, l’uridine de synthèse utilisée dans l’ARNm des vaccins n’est pas toujours bien lue par nos cellules et ces erreurs de lecture aboutissent à la fabrication de protéines autres que la Spike. Les conséquences de cette production erratique de protéines inconnues pourraient, à terme, s’avérer délétères.
⇒ Lire notre article du 18/12/2023 :
◆ Une production de Spike incontrôlée
De plus, ajoutait Jean-Marc Sabatier, « on se rend compte que la production de protéine Spike, qui devait être limitée, n’est pas du tout contrôlée.On a détecté de la Spike vaccinale dans le sang de personnes vaccinées jusqu’à 15 mois après leur dernière injection, ce qui suggère que ces personnes continuent à en produire. »
Le cardiologue américain Peter McCullough faisait le même constat lors de son intervention au Parlement européen en septembre 2023, où il a déclaré que « pas une seule étude ne montre que l’ARN messager est dégradé » dans le corps humain, une fois injecté. Et s’il n’est pas dégradé, cela signifie qu’il continue à servir pour produire aussi bien de la Spike que d’autres protéines inconnues.
◆ Le risque d’avoir en soi une machine infernale ?
Avec les vaccins à ARNm auto-amplifiant, ce processus incontrôlé risque d’être pire encore. À travers cette nouvelle technologie, notre corps n’est plus seulement transformé en usine de production de la Spike, mais également en usine de production d’ARN messagers, puisqu’une fois injectés, ceux-ci vont s’auto-répliquer à l’intérieur de nos cellules !
Sur le papier, ces ARNm auto-amplifiants sont censés se dégrader au bout d’un certain temps. Mais si, encore une fois, ils ne se dégradent pas comme prévu, le risque est qu’ils se reproduisent indéfiniment et que nos cellules fabriquent tout aussi indéfiniment de la Spike ou d’autres protéines, sans que personne ne puisse stopper cette machine infernale.
◆ Peu de recul et aucune prudence
Alors que la prudence devrait être de mise face à ces nouvelles technologies vaccinales, on voit qu’il n’en est rien et que les autorités de santé continuent de donner leur approbation à des produits qui nécessiteraient à l’évidence une meilleure maîtrise et de nombreuses années de recul.
De manière tout aussi inquiétante, les vaccins à ARNm auto-amplifiant sont désormais également utilisés en médecine vétérinaire.
◆ Quels risques pour les consommateurs de canards vaccinés à l’ARNma ?
Depuis avril 2024, le Respons AI H5 du laboratoire Ceva Santé animale est ainsi administré en France aux poules et aux canards d’élevage, dans le cadre de la campagne de vaccination obligatoire contre la grippe aviaire de souche H5. Avec quels risques pour les consommateurs ? Aucun, selon le ministère de l’Agriculture et de la Souveraineté alimentaire.
La pharmacienne biologiste Hélène Banoun, qui vient de publier sur le site de l’Aimsib un article consacré à ce sujet, n’en est pas si convaincue. « Aucun test n’a été effectué sur la capacité de ce produit génique à être transmis au consommateur de viande de canard », souligne-t-elle, avant d’expliquer les raisons pour lesquelles, selon elle, « si la viande est mal cuite […], le consommateur peut théoriquement être “vacciné” par cet ARNm destiné au canard. »
Attention, affaire lamentable ! C’est l’histoire d’une dame sans histoire âgée de 30 ans qui développe les signes caractéristiques de la maladie de Charcot quelques jours après une seconde administration du vaccin anti-Covid de Pfizer, et que le centre de pharmacovigilance déclarera imputable à cette injection. Publication de la nouvelle dans la presse locale et c’est immédiatement le drame, on déprogramme l’article en extrême urgence. Depuis quand une décision d’imputabilité d’un centre de pharmacovigilance ne peut pas faire l’objet d’une nouvelle journalistique, depuis quand les sujets sanitaires sont-ils tous gérés par destruction de la liberté d’informer ? Courage Madame « Mélanie », bonne lecture.
Le 30 décembre dernier, France Bleu Auvergne faisait paraître un article sous le titre : « Première reconnaissance officielle, pour une Moulinoise, atteinte de la maladie de Charcot après un vaccin anti-covid ».
Cet article n’est resté en ligne que quelques heures pour, finalement, faire l’objet d’une dépublication en fin de journée.
Cette succession d’événements a été suffisante pour enflammer les réseaux sociaux, mais aussi les rédactions de presse (tous supports confondus).
Il ne pouvait en être autrement pour un sujet « hyper » clivant. Nous avons, en effet, d’un côté les défenseurs acharnés d’un vaccin anti-covid, dont ils sont absolument certains qu’il ne peut pas être à l’origine de pathologies très graves, comme la maladie de Charcot, et de l’autre côté, non pas comme cela est présenté de façon simpliste, ceux que certains nomment les « antivax », mais des personnes qui, depuis qu’elles ont été vaccinées contre la Covid, en 2021, 2022 … ont déclenché des pathologies plus ou moins graves dont les médecins ne pouvaient expliquer le déclenchement soudain.
Une question s’est alors légitiment posée : et si les vaccins anti-covid étaient à l’origine de la détérioration de mon état de santé ? Il semble pourtant qu’il soit, en France, interdit de se poser cette simple question.
Pire, si vous posez cette question, vous êtes immédiatement diabolisé et taxé de complotiste. C’est ainsi la meilleure façon de faire taire, non pas toute critique, mais toute tentative visant à émettre des doutes quant à un discours officiel dont les chiens de garde persistent à affirmer, de façon sentencieuse, que les vaccins anti-covid ne présentent aucun risque, ou, en tout cas, pas de risque grave pour la santé.
Des vigies semblent donc scruter la moindre apparition d’articles sur le sujet, comme pour mieux réagir à des affirmations qui pourraient remettre en cause un discours officiel, quitte à se comporter comme des maîtres censeurs.
Concrètement, que s’est-il passé le 30 décembre dernier ?
France Bleu Auvergne fait paraître un article, pourtant très neutre, et sans parti pris, qui fait suite à un long entretien avec Mélanie, jeune femme âgée de 35 ans, atteinte de la maladie de Charcot. Cet article avait le grand mérite de montrer la solitude et la détresse des malades atteints de telles pathologie et de leur famille, surtout quand ils cherchent à comprendre pourquoi.
Il convient ici de préciser que la maladie de Charcot, aussi connue sous le nom de sclérose latérale amyotrophique (SLA), est une maladie neurodégénérative. C’est une maladie rare (extrêmement rare chez les personnes comme Mélanie qui, au moment du diagnostic, avait 31 ans) dont la prévalence est de 2,7 sur 100 000.
La sclérose latérale amyotrophique (SLA), est une maladie grave qui entraîne le décès de la personne dans un délai de 3 à 5 ans en moyenne, après l’apparition de la maladie, principalement en raison de l’atteinte des muscles responsables de la respiration. Il convient encore de préciser qu’à ce stade des recherches scientifiques, les causes de la maladie de Charcot demeurent inconnues dans 90 % des cas (on parle de cas sporadiques). En revanche, des causes héréditaires de la maladie de Charcot ont pu être mises en évidence dans 10 % des cas.
Mais quel est l’apport de cet article, à l’origine de tant de réactions ?
Il est écrit : « C’est bien le vaccin anti-Covid, qu’elle a reçu, en 2021, qui est à l’origine de la maladie de Charcot (de Mélanie) …/… La pharmacovigilance vient de la reconnaître (…) ».
Ces seules affirmations ont mis le feu aux poudres
Devant les vives réactions des lecteurs de cet article, principalement sur les réseaux sociaux, la Direction de France Bleu a décidé de mettre un terme de façon brutale à un débat dont, manifestement, elle ne veut pas, en le dépubliant. Le même média tente alors de s’en justifier : « Un article qui évoquait la reconnaissance d’un lien entre la maladie de Charcot et le vaccin de Pfizer/BioNTech contre le Covid-19. Cet article avait été publié à partir d’informations parcellaires, ayant entraîné une erreur d’interprétation ».
France Bleu reconnaît, alors, qu’il s’agit là d’une information sensible mais, dans son grand courage, qu’elle ne veut pas participer » à la propagation de fausses informations ». De préciser, encore, qu’il ne s’agit en aucun cas de censure, en d’autre temps, sous d’autres régimes, la presse d’État n’aurait pas fait mieux.
Mais ce média va plus loin en se livrant, alors, à une diffusion de vérités toutes relatives, il affirme : – « Les autorités sanitaires françaises n’ont jamais confirmé de lien entre la vaccination contre la Covid-19 et la sclérose latérale amyotrophique (SLA, maladie de Charcot). La responsabilité du vaccin dans l’apparition de la maladie de la patiente évoquée n’a, à ce jour, pas été reconnue »,
De minimiser enfin le rôle de la pharmacovigilance en précisant : « C’est l’ANSM qui tranche, et non un organisme de pharmacovigilance. Et à ce jour, l’ANSM n’a pas communiqué sur un quelconque lien entre la maladie de Charcot et le vaccin Pfizer contre la Covid-19. »
Qu’en est-il réellement ? Ces objections sont-elles recevables ?
Non.
Sur le premier point : la non reconnaissance d’un lien entre la SLA de Mélanie et le vaccin Pfizer contre la Covid.
Si France Bleu avait eu le souci de vérifier ses informations, nous lui aurions présenté la fiche établie par le centre de pharmacovigilance qui a traité le cas de Mélanie. Ce média aurait vu que dans les jours qui ont suivi une deuxième injection (juin 2021), Mélanie a été victime de fasciculations. Un mois après, ont été constatées des atteintes neurologiques. Au mois de septembre 2022, était posé le diagnostic d’une SLA. En conclusion, il est écrit : – « Diagnostic de SLA dont les premiers signes se sont manifestés quelques jours après la D2 de Comirnaty»
Le pharmacovigilant note : « L’imputabilité retenue en l’espèce est établie selon la méthode française officielle de 1985 publiée par Bégaud et al. (Bulletin officiel du ministère chargé de la santé n° 84/50 fr 1985) et réactualisée par le Cercle de Réflexion sur l’imputabilité en 2011 (publié dans Théraphie 2011 ; 66:517- 25). Les éventuels scores d’imputabilité qui auront été retenus sont établis sans préjudice des éléments d’investigation qui pourraient être effectués dans le cadre de procédures juridiques ou amiables d’indemnisations ».
Nous précisons ici que Mélanie n’avait aucun antécédent médical, et que le facteur héréditaire a été écarté.
Donc, contrairement à ce qu’affirme France Bleu, la SLA, contractée par Mélanie est bien imputable au vaccin Pfizer contre la COVID et cette imputabilité a bien été confirmée par une autorité sanitaire.
Il convient de ne pas minimiser, comme France Bleu, le rôle et l’importance des centre régionaux de pharmacovigilance qui ont une mission dévolue par le Ministère de la Santé.
À ce titre, la pharmacovigilance a pour mission la surveillance des médicaments et la prévention du risque d’effets indésirables résultant de leur utilisation, que ce risque soit potentiel ou avéré après commercialisation. Dans ce cadre, la pharmacovigilance met en place des enquêtes et des études pour analyser les risques et participer à la mise en place et au suivi des plans de gestion des risques. La pharmacovigilance s’appuie sur une base réglementaire nationale et européenne : lois, décrets, directives, bonnes pratiques de pharmacovigilance publiées par arrêté. Dans notre cas d’espèce, nous avons eu confirmation par le CRPV que le cas de Mélanie a été remonté à l’ANSM avec pour commentaire : « ce dossier a été remonté à l’ANSM en proposant un « cas marquant », ce qui signifie que nous souhaitons appuyer l’attention de l’ANSM sur les cas de SLA déclarés après vaccination contre la Covid-19 ». Au moment où a été rédigé l’article, l’ANSM était informée.
Nous précisons encore qu’au niveau de l’association AAVIC TEAM, dont fait partie Mélanie, nous avons au moins un deuxième cas identique.
Quant au rôle de l’ANSM défendu par France Bleu et sur le fait que ce soit elle qui tranche et non la pharmacovigilance. Si, effectivement, c’est elle qui tranche, comment peut-on imaginer aujourd’hui, sur ce cas, et à la lumière des protocoles d’examens qui ont été mis en œuvre pour établir cette imputabilité, qu’elle puisse dire autrement ? Il semble impossible qu’elle puisse avoir un avis contraire à la lumière des résultats qui lui seront présentés. Mieux, il va être de son devoir de prendre en considération le risque d’effets indésirables graves, et examiner les options permettant de prévenir les risques ou les réduire, au besoin, pour prendre des mesures appropriées. À partir de là, il convient que certaines attitudes doctes soient abandonnées.
Cette réponse méritait d’être apportée, d’autant plus qu’à la suite de ces articles, certains ont cru bon publier à leur tour des articles inutilement blessants et confinant à la diffamation.
Un, en particulier, a retenu notre attention, celui publié le 2 janvier 2025 par le Journal International de Médecine. Cet article odieux, qui brille par son absence de contenu et une compassion de façade,
n’a pour finalité que de décrédibiliser les associations, dont AAVIC TEAM, qui tentent d’aider ces malades qui, après des injections contre la COVID, se trouvent dans une situation d’errance médicale insupportable. Nous parlons en particulier au niveau de cette association, de plusieurs centaines de personnes dont la vie a été bouleversée : pathologies graves, perte d’autonomie, perte d’emploi, situation financière précaire … aussi l’absence d’empathie de certains « vaccinolâtres » écervelés leur est insupportable. D’ailleurs, et à la suite d’Hannah Arendt, nous affirmons que « la mort de l’empathie humaine est l’un des premiers signes et le plus révélateur d’une culture sur le point de sombrer dans la barbarie ».
Notre combat est d’aider ces malades à faire éclater la vérité, à ce qu’ils soient pris en charge comme il se doit et qu’ils soient indemnisés à hauteur des préjudices qui sont les leurs.
Le dernier combat de Mélanie est d’être la porte-parole de ces malades, et de faire entendre leur voix.
Durant les trois années qu’a duré la crise dite sanitaire, nous avons été submergés d’annonces officielles, de décisions autoritaires et des discours prétendument « scientifiques » qui se sont imposés à nous comme des dogmes.
Mais aujourd’hui, les faits commencent à parler, et ils racontent une toute autre histoire.
Le Digital Services Act ou DSA est désormais actif dans l’Union européenne depuis l’été dernier. Cette organisation, ignorant la volonté des peuples européens, a décidé de se doter des moyens efficaces pour lutter contre ce qu’elle appelle la « désinformation » et des publications aux contenus « illicites » ! Evidemment, on se pose sur le champ la question de savoir ce qui est « licite » ? Il va de soi, et tout le monde l’aura compris depuis bien longtemps, qu’il s’agit d’un instrument de contrôle, de censure des informations qui ne sont pas en parfaite symbiose avec le discours idéologique mondialiste des serviteurs de la Trilatérale, les Léo-straussiens et autres Forum Economique Mondial (FEM), Bri, Dolder Club, Bilderberg … etc. Ces gens conduisent le monde vers un Nouvel Ordre Mondial enfin advenu dans toute son ampleur et prévu par l’Agenda 2030 ayant planifié dans le détail les mesures successives permettant cet avènement de la dictature absolue, « le meilleur des mondes », une sorte de confinement indéfini pour tous les peuples strictement autorisés à vivre dans la seule mesure d’une soumission inconditionnelle…
La liberté d’expression n’est pas compatible avec un Nouvel Ordre Mondial : l’UE, dont la seule raison d’être est celle de servir ce projet, fait donc tout ce qui est possible pour appliquer le plan concocté par les tyrans du mondialisme. Les peuples de l’Union européenne ont été pris en otage par ses dirigeants qu’ils n’ont pas mandatés …
Avec l’arrivée des nouveaux élus aux Etats-Unis, on remarque que Meta et Instagram ont mis fin à la censure qu’ils pratiquaient sous le contrôle des plus grands « démocrates » de la planète !
Et voilà que l’UE de son côté se met à faire le contraire de ce qui se passe aux USA.
Le DSA exige des plates-formes numériques une censure acharnée sous peine de sanctions pouvant infliger une perte de 6% de leur chiffre d’affaires annuel.
Le DSA va utiliser des outils comme NewsGuard pour exercer sa dictature. Cette dernière société est une entreprise privée qui joue un rôle de chien de garde au service du système de censure. NewsGuard évalue tous les sites d’information et contrôle leur alignement sur l’idéologie dominante seule tolérée par le DSA. Cette société s’est donnée le pouvoir d’attribuer des notes de « crédibilité » à tous les médias et particulièrement aux sites alternatifs qui proposent une lecture plus objective de l’information en promotionnant la liberté d’expression désormais proscrite dans l’Union européenne. Les limiers de NewsGuard se permettent d’agir sans le moindre mandat des peuples qu’ils prétendent contrôler en ignorant leurs droits ! Qui a donné à ces gens un tel pouvoir, avec quelle légitimité ?
Tout média qui sera jugé dans ses publications non conforme aux critères idéologiques de la « vérité » définie par le DSA , sera pénalisé financièrement, étranglé et à terme éliminé. Les revenus publicitaires seront réduits via des mécanismes de dévalorisation commandés par les algorithmes de service !
Mis à part l’expérience des Grecs puis celle de l’Odénossonie en Amérique du Nord avant l’arrivée des colons européens, puis celle du Chiapas dont la devise déclare que : « Dans une véritable démocratie, c’est le peuple qui commande et c’est l’État qui obéit« , il n’existe pas de démocraties pouvant sérieusement se donner ce titre. On se souvient du discours historique de Sieyès du 7 septembre 1789 : « Le peuple… dans un pays qui n’est pas une démocratie – et la France ne saurait l’être –, le peuple ne peut parler, ne peut agir que par ses représentants. » Depuis longtemps, les médias inféodés au système, comme les politiques, ne cessent de faire croire que nous sommes en démocratie alors que nous ne l’avons jamais été. La démocratie a été systématiquement et volontairement confondue avec les libertés publiques et privées !
Mais les libertés publiques et privées c’était encore beaucoup trop : il fallait réduire ces libertés à néant, faute de quoi il n’était pas possible d’envisager un Nouvel Ordre Mondial incompatible avec les idées de démocratie et de libertés …
L’esprit critique, le sens de l’objectivité, la voix des sciences, la sagesse de l’expérience et le simple bon sens, tout cela n’est pas recevable par les inquisiteurs du DSA qui appliquent la censure à l’encontre de tous ceux qui sont jugés hérétiques, schismatiques, idolâtres, divergents, non alignés, « complotistes », récalcitrants, opposants voire « terroristes », « climato-sceptiques » ou « menaces pour la sécurité des États » etc …
En revanche, l’AFP qui doit faire figure d’organisme de référence de la vérité, est grassement rémunérée pour que tout ce qu’elle transmet soit strictement conforme à l’idéologie mondialiste.
Ainsi le débat public n’a pas lieu puisqu’il est totalement orienté dans une seule direction. Les opinions divergentes ne sont donc pas accessibles ou difficilement accessibles pour le grand nombre qui est maintenu dans sa bulle d’informations stérilisées et univoques.
Le DSA est donc bien « Le ministère de la vérité » ayant traversé la fiction pour devenir réalité !
Nous sommes officiellement manipulés, orientés à ne penser que dans un sens : celui du mondialisme qui s’impose brutalement à tous.
Le DSA n’est pas autre chose qu’un instrument de censure et de contrôle idéologique, une expression violente de la dictature des « élites » mondialistes non élues et qui décident pour tous ce que sera la vie de tous.
Conclusion
Quoi qu’il arrive, nous pouvons et devons contourner la censure. Il y a des Plates-formes comme Odysee.com ou CrowdBunker.com en France qui relaient les informations censurées et militent intelligemment pour la liberté d’expression.
Le site mondialisation.ca est une référence pour la liberté d’expression, l’information objective, non censurée.
Il est donc toujours possible de contourner le dispositif des inquisiteurs: leur maltraitance, leur persécution, leurs interdits, leurs sanctions et leurs bûchers et s’informer correctement ! Finalement, le problème n’est pas de savoir si l’on peut s’informer, mais si l’on veut vraiment s’informer!
La servitude volontaire est une faiblesse chez ceux qui se sont exposés trop longtemps au dressage psychologique en acceptant la facilité de l’information fast-food des télévisions et des autres médias inféodés, baxtérisés à l’argent public pour certains et pour les autres, formatés à l’idéologie mondialiste dont leurs propriétaires milliardaires sont les gourous !
Nous, les Européens, pouvons-nous accepter le totalitarisme d’un « ministère de la vérité » ? Pouvons-nous tolérer le retour de l’inquisition? Toutes ces créations de l’Union européenne ne sont ni légitimes, ni acceptables éthiquement comme humainement ! Nous avons le devoir de boycotter ces institutions, de les mettre en échec, de les combattre par tous les moyens et de les détruire en se moquant de leur prétention!
Femme de 59 ans présentant une thrombose veineuse profonde étendue et une thromboembolie pulmonaire 7 jours après une première dose du vaccin à ARNm Pfizer-BioNTech BNT162b2 COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34117206/
Images TEP numériques 68 Ga-DOTATOC d’infiltrats de cellules inflammatoires dans la myocardite après vaccination avec le COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34746968/
Un cas de polyradiculoneuropathie démyélinisante aiguë avec paralysie faciale bilatérale après le vaccin ChAdOx1 nCoV-19 :. https://pubmed.ncbi.nlm.nih.gov/34272622/
Un cas de polyradiculoneuropathie démyélinisante aiguë avec paralysie faciale bilatérale après vaccination ChAdOx1 nCoV-19 : https://pubmed.ncbi.nlm.nih.gov/34272622/
Un cas d’encéphalopathie aiguë et d’infarctus du myocarde sans élévation du segment ST après vaccination avec l’ARNm-1273 : effet indésirable possible : https://pubmed.ncbi.nlm.nih.gov/34703815/
Un cas de vascularite associée aux ANCA après vaccination AZD1222 (Oxford-AstraZeneca) contre le SRAS-CoV-2 : victime ou causalité ? : https://pubmed.ncbi.nlm.nih.gov/34416184/
Un cas de purpura thrombocytopénique idiopathique après une dose de rappel du vaccin COVID-19 BNT162b2 (Pfizer-Biontech) : https://pubmed.ncbi.nlm.nih.gov/34820240/
Un cas de syndrome de Guillain-Barré ataxique sensoriel avec des anticorps anti-GM1 d’immunoglobuline G après la première dose du vaccin à ARNm COVID-19 BNT162b2 (Pfizer) : https://pubmed.ncbi.nlm.nih.gov/34871447/
Un cas de présentation clinique légère inhabituelle de thrombocytopénie thrombotique immunitaire induite par le vaccin COVID-19 avec thrombose de la veine splanchnique : https://pubmed.ncbi.nlm.nih.gov/34843991/
Une série de cas de péricardite aiguë après vaccination contre le COVID-19 dans le contexte de rapports récents en Europe et aux États-Unis : https://pubmed.ncbi.nlm.nih.gov/34635376/
Une série de cas de réactions cutanées au vaccin COVID-19 dans le département de dermatologie de l’Université de Loma Linda : https://pubmed.ncbi.nlm.nih.gov/34423106/
Un regard sur le rôle de l’immunohistochimie post-mortem dans la compréhension de la physiopathologie inflammatoire de la maladie COVID-19 et des événements indésirables thrombotiques liés au vaccin : une revue narrative : https://pubmed.ncbi.nlm.nih.gov/34769454/
Un trouble thrombocytopénique prothrombotique ressemblant à une thrombocytopénie induite par l’héparine après vaccination contre le coronavirus-19 : https://europepmc.org/article/PPR/PPR304469
Un cas rare d’un homme asiatique d’âge moyen atteint de thrombose veineuse cérébrale après la vaccination contre le COVID-19 AstraZeneca : https://pubmed.ncbi.nlm.nih.gov/34274191/
Un cas rare de thrombose veineuse cérébrale et de coagulation intravasculaire disséminée temporellement associée à l’administration du vaccin COVID-19 : https://pubmed.ncbi.nlm.nih.gov/33917902/
Un cas rare de thrombopénie thrombotique induite par le vaccin COVID-19 (VITT) affectant la circulation artérielle veinosplanchnique et pulmonaire dans un hôpital général de district du Royaume-Uni : https://pubmed.ncbi.nlm.nih.gov/34535492/
Un cas rare de thrombose et de thrombocytopénie de la veine ophtalmique supérieure après vaccination ChAdOx1 nCoV-19 contre le SRAS-CoV-2 : https://pubmed.ncbi.nlm.nih.gov/34276917/
Un rapport sur les événements indésirables liés à la myocardite dans le système américain de notification des événements indésirables liés aux vaccins. (VAERS) en association avec les produits biologiques injectables COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34601006/
Abbate, A., Gavin, J., Madanchi, N., Kim, C., Shah, PR, Klein, K., . . . Danielides, S. (2021). Myocardite fulminante et hyperinflammation systémique associées temporellement à la vaccination par ARNm BNT162b2 contre le COVID-19 chez deux patients. Int J Cardiol, 340, 119-121. est ce que je:10.1016/j.ijcard.2021.08.018. https://www.ncbi.nlm.nih.gov/pubmed/34416319
Douleurs abdominales et hémorragie surrénalienne bilatérale dues à une thrombocytopénie thrombotique immunitaire induite par le vaccin COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34546343/
Abu Mouch, S., Roguin, A., Hellou, E., Ishai, A., Shoshan, U., Mahamid, L., . . . Berar Yanay, N. (2021). Myocardite après vaccination à ARNm contre le COVID-19. Vaccin, 39(29), 3790-3793. est ce que je:10.1016/j.vaccine.2021.05.087. https://www.ncbi.nlm.nih.gov/pubmed/34092429
Hépatite aiguë de type auto-immune avec anticorps antimitochondriaux atypiques après vaccination avec l’ARNm du COVID-19 : une nouvelle entité clinique : https://pubmed.ncbi.nlm.nih.gov/34293683/
Névrite optique/chiasme bilatéral aigu bilatéral avec myélite transversale extensive longitudinale dans la sclérose en plaques stable de longue date après vaccination à base de vecteur contre le SRAS-CoV-2 : https://pubmed.ncbi.nlm.nih.gov/34131771/
Encéphalopathie hyperactive aiguë après vaccination contre le COVID-19 avec réponse spectaculaire à la méthylprednisolone : rapport de cas : https://pubmed.ncbi.nlm.nih.gov/34512961/
AVC ischémique aigu révélant une thrombocytopénie thrombotique immunitaire induite par le vaccin ChAdOx1 nCov-19 : impact sur la stratégie de recanalisation : https://pubmed.ncbi.nlm.nih.gov/34175640/
Infarctus aigu du myocarde dans les 24 heures suivant la vaccination contre le COVID-19 : le syndrome de Kounis est-il le coupable : https://pubmed.ncbi.nlm.nih.gov/34702550/
Lésion myocardique aiguë après vaccination contre le COVID-19 : rapport de cas et examen des preuves actuelles de la base de données du Vaccine Adverse Event Reporting System : https://pubmed.ncbi.nlm.nih.gov/34219532/
Lésion myocardique aiguë après vaccination contre le COVID-19 : rapport de cas et examen des preuves actuelles provenant de la base de données du système de notification des événements indésirables liés aux vaccins : https://pubmed.ncbi.nlm.nih.gov/34219532/
Rechute aiguë et altération de la vaccination après la vaccination contre le COVID-19 chez un patient atteint de sclérose en plaques traité par rituximab : https://pubmed.ncbi.nlm.nih.gov/34015240/
Infarctus du myocarde aigu avec élévation du segment ST secondaire à une thrombose immunitaire induite par le vaccin avec thrombocytopénie (VITT) : https://pubmed.ncbi.nlm.nih.gov/34580132/
Une lymphadénopathie supraclaviculaire d’apparition aiguë coïncidant avec une vaccination intramusculaire à ARNm contre le COVID-19 peut être liée à la technique d’injection du vaccin, Espagne, janvier et février 2021 : https://pubmed.ncbi.nlm.nih.gov/33706861/
Interactions de l’adénovirus avec les plaquettes et la coagulation et syndrome de thrombocytopénie auto-immune associé au vaccin : https://pubmed.ncbi.nlm.nih.gov/34407607/
Interactions de l’adénovirus avec les plaquettes et la coagulation et syndrome de thrombocytopénie thrombotique immunitaire induit par le vaccin : https://pubmed.ncbi.nlm.nih.gov/34407607/
Effets indésirables signalés après la vaccination contre le COVID-19 dans un hôpital de soins tertiaires, centrés sur la thrombose du sinus veineux cérébral (CVST) : https://pubmed.ncbi.nlm.nih.gov/34092166/
Effets indésirables signalés après la vaccination contre le COVID-19 dans un hôpital de soins tertiaires, axés sur la thrombose du sinus veineux cérébral (CVST) : https://pubmed.ncbi.nlm.nih.gov/34092166/
Événements indésirables liés à l’injection du COVID pouvant survenir chez les enfants. Une lymphadénopathie supraclaviculaire d’apparition aiguë coïncidant avec la vaccination intramusculaire à ARNm contre le COVID-19 peut être liée à la technique d’injection du vaccin, Espagne, janvier et février 2021 : https://pubmed.ncbi .nlm.nih.gov/33706861/
Incidence spécifique à l’âge et au sexe de la thrombose du sinus veineux cérébral associée à la vaccination Ad26.COV2.S COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34724036/
Albert, E., Aurigemma, G., Saucedo, J. et Gerson, DS (2021). Myocardite suite à la vaccination contre le COVID-19. Représentant de l’affaire Radiol, 16(8), 2142-2145. est ce que je:10.1016/j.radcr.2021.05.033. https://www.ncbi.nlm.nih.gov/pubmed/34025885
Composants allergènes du vaccin à ARNm-1273 contre le COVID-19 : implication possible du polyéthylène glycol et de l’activation du complément médiée par les IgG : https://pubmed.ncbi.nlm.nih.gov/33657648/
Réactions allergiques et événements indésirables associés à l’administration de vaccins à base d’ARNm. Une expérience du système de santé : https://pubmed.ncbi.nlm.nih.gov/34474708/
Réactions allergiques, y compris anaphylaxie, après avoir reçu la première dose du vaccin Modern COVID-19 – États-Unis, 21 décembre 2020-10 janvier 2021 : https://pubmed.ncbi.nlm.nih.gov/33507892/
Réactions allergiques, y compris l’anaphylaxie, après avoir reçu la première dose du vaccin Modern COVID-19 – États-Unis, du 21 décembre 2020 au 10 janvier 2021 : https://pubmed.ncbi.nlm.nih.gov/33641268/
Réactions allergiques, y compris anaphylaxie, après avoir reçu la première dose du vaccin Pfizer-BioNTech COVID-19 – États-Unis, 14 au 23 décembre 2020 : https://pubmed.ncbi.nlm.nih.gov/33641264/
Réactions allergiques, y compris anaphylaxie, après avoir reçu la première dose du vaccin Pfizer-BioNTech COVID-19 – États-Unis, 14-23 décembre 2020 : https://pubmed.ncbi.nlm.nih.gov/33444297/
Une étude observationnelle pour identifier la prévalence de la thrombocytopénie et des anticorps anti-PF4/polyanion chez les agents de santé norvégiens après la vaccination contre le COVID-19 : https://pubmed.ncbi.nlm.nih.gov/33909350/
Une présentation inhabituelle de thrombose veineuse profonde aiguë après le vaccin moderne contre le COVID-19 : rapport de cas : https://pubmed.ncbi.nlm.nih.gov/34790811/
Réactions anaphylactiques au vaccin Pfizer BNT162b2 : rapport de 3 cas d’anaphylaxie suite à une vaccination avec Pfizer BNT162b2 : https://pubmed.ncbi.nlm.nih.gov/34579211/
Événements artériels, thromboembolie veineuse, thrombocytopénie et saignements après vaccination avec Oxford-AstraZeneca ChAdOx1-S au Danemark et en Norvège : étude de cohorte basée sur la population : https://pubmed.ncbi.nlm.nih.gov/33952445/
Association entre la vaccination ChAdOx1 nCoV-19 et les épisodes hémorragiques : étude de cohorte à grande échelle basée sur la population : https://pubmed.ncbi.nlm.nih.gov/34479760/
Association d’antécédents autodéclarés d’allergie à haut risque avec des symptômes d’allergie après la vaccination contre le COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34698847/
Thrombose atypique associée au vaccin VaxZevria® (AstraZeneca) : données du réseau français des centres régionaux de pharmacovigilance : https://pubmed.ncbi.nlm.nih.gov/34083026/
Approche australienne et néo-zélandaise du diagnostic et du traitement de la thrombose immunitaire et de la thrombopénie immunitaire induites par le vaccin : https://pubmed.ncbi.nlm.nih.gov/34490632/
Hépatite auto-immune se développant après le vaccin contre la maladie à coronavirus 2019 (COVID-19) : causalité ou victime ? : https://pubmed.ncbi.nlm.nih.gov/33862041/
Adénopathie axillaire associée à la vaccination contre le COVID-19 : résultats d’imagerie et recommandations de suivi chez 23 femmes : https://pubmed.ncbi.nlm.nih.gov/33624520/
Aye, YN, Mai, AS, Zhang, A., Lim, OZH, Lin, N., Ng, CH, . . . Mâcher, NWS (2021). Infarctus aigu du myocarde et myocardite après la vaccination contre le COVID-19. QJM. est ce que je:10.1093/qjmed/hcab252. https://www.ncbi.nlm.nih.gov/pubmed/34586408
Azir, M., Inman, B., Webb, J. et Tannenbaum, L. (2021). STEMI Mimic : myocardite focale chez un patient adolescent après le vaccin à ARNm COVID-19. J Emerg Med, 61(6), e129-e132. est ce que je:10.1016/j.jemermed.2021.09.017. https://www.ncbi.nlm.nih.gov/pubmed/34756746
Barda, N., Dagan, N., Ben-Shlomo, Y., Kepten, E., Waxman, J., Ohana, R., . . . Balicer, RD (2021). Sécurité du vaccin à ARNm BNT162b2 contre le Covid-19 à l’échelle nationale. N Engl J Med, 385(12), 1078-1090. est ce que je:10.1056/NOMoa2110475. https://www.ncbi.nlm.nih.gov/pubmed/34432976
Paralysie de Bell après vaccination inactivée contre le COVID-19 chez un patient ayant des antécédents de paralysie de Bell récurrente : rapport de cas : https://pubmed.ncbi.nlm.nih.gov/34621891/
Paralysie de Bell après la deuxième dose du vaccin Pfizer COVID-19 chez un patient ayant des antécédents de paralysie de Bell récurrente : bhttps://www.sciencedirect.com/science/article/pii/S266635462100020X
Paralysie de Bell après vaccination avec les vaccins à ARNm (BNT162b2) et inactivés (CoronaVac) contre le SRAS-CoV-2 : une série de cas et une étude cas-témoins imbriquée : https://pubmed.ncbi.nlm.nih.gov/34411532/
Méfiez-vous des troubles du spectre de la neuromyélite optique après une vaccination avec un virus inactivé contre le COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34189662/
Bhandari, M., Pradhan, A., Vishwakarma, P. et Sethi, R. (2021). Coronavirus et manifestations cardiovasculaires : entrer dans le vif du sujet. Monde J Cardiol, 13(10), 556-565. est ce que je:10.4330/wjc.v13.i10.556. https://www.ncbi.nlm.nih.gov/pubmed/34754400
Faiblesse faciale bilatérale avec une variante de paresthésie du syndrome de Guillain-Barré après le vaccin Vaxzevria COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34261746/
Thrombose veineuse ophtalmique supérieure bilatérale, accident vasculaire cérébral ischémique et thrombocytopénie immunitaire après vaccination avec ChAdOx1 nCoV-19 : https://pubmed.ncbi.nlm.nih.gov/33864750/
AVC thalamique bilatéral : un cas de thrombocytopénie thrombotique immunitaire induite par le vaccin COVID-19 (VITT) ou une coïncidence due à des facteurs de risque sous-jacents : https://pubmed.ncbi.nlm.nih.gov/34820232/
Myocardite lymphocytaire prouvée par biopsie après la première vaccination par ARNm du COVID-19 chez un homme de 40 ans : rapport de cas : https://pubmed.ncbi.nlm.nih.gov/34487236/
Myocardite lymphocytaire prouvée par biopsie après première vaccination avec l’ARNm du COVID-19 chez un homme de 40 ans : rapport de cas : https://pubmed.ncbi.nlm.nih.gov/34487236/
Anaphylaxie biphasique après la première dose du vaccin contre le coronavirus à ARN messager 2019 avec résultat positif au test cutané au polysorbate 80 : https://pubmed.ncbi.nlm.nih.gov/34343674/
Dysfonctionnement systolique biventriculaire dans la myocardite aiguë après la vaccination contre le SRAS-CoV-2 ARNm-1273 : https://pubmed.ncbi.nlm.nih.gov/34601566/
Bozkurt, B., Kamat, I. et Hotez, PJ (2021). Myocardite avec les vaccins à ARNm COVID-19. Circulation, 144(6), 471-484. est ce que je:10.1161/CIRCULATIONAHA.121.056135. https://www.ncbi.nlm.nih.gov/pubmed/34281357
Buchhorn, R., Meyer, C., Schulze-Forster, K., Junker, J. et Heidecke, H. (2021). Libération d’autoanticorps chez les enfants après une vaccination à ARNm contre le virus Corona : un facteur de risque du syndrome inflammatoire multisystémique ? Vaccins (Bâle), 9(11). est ce que je:10.3390/vaccins9111353. https://www.ncbi.nlm.nih.gov/pubmed/34835284
La vaccination CAd26.COV2-S peut révéler une thrombophilie héréditaire : thrombose massive du sinus veineux cérébral chez un jeune homme ayant une numération plaquettaire normale : https://pubmed.ncbi.nlm.nih.gov/34632750/
Calcaterra, G., Bassareo, PP, Barilla, F., Romeo, F. et Mehta, JL (2022). Concernant l’état prothrombotique inattendu suite à certains vaccins contre la maladie à coronavirus 2019. J Cardiovasc Med (Hagerstown), 23(2), 71-74. est ce que je:10.2459/JCM.0000000000001232. https://www.ncbi.nlm.nih.gov/pubmed/34366403
Calcaterra, G., Mehta, J.L., de Gregorio, C., Butera, G., Neroni, P., Fanos, V. et Bassareo, PP (2021). Vaccin COVID 19 pour les adolescents. Préoccupation concernant la myocardite et la péricardite. Représentant pédiatre, 13(3), 530-533. est ce que je:10.3390/pediatric13030061. https://www.ncbi.nlm.nih.gov/pubmed/34564344
Résultats de résonance magnétique cardiovasculaire chez de jeunes patients adultes atteints de myocardite aiguë après vaccination par ARNm contre le COVID-19 : une série de cas : https://pubmed.ncbi.nlm.nih.gov/34496880/
Événements cardiovasculaires, neurologiques et pulmonaires après vaccination avec les vaccins BNT162b2, ChAdOx1 nCoV-19 et Ad26.COV2.S : une analyse des données européennes : https://pubmed.ncbi.nlm.nih.gov/34710832/
Rapport de cas : myocardite fulminante aiguë et choc cardiogénique après vaccination contre le coronavirus à ARN messager en 2019 nécessitant une réanimation cardio-pulmonaire extracorporelle : https://pubmed.ncbi.nlm.nih.gov/34778411/
Rapport de cas : Vasculite associée aux ANCA présentant une rhabdomyolyse et une glomérulonéphrite Pauci-immunitaire en croissant après vaccination avec l’ARNm Pfizer-BioNTech COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34659268/
Rapport de cas : une vascularite associée aux anticorps cytoplasmiques anti-neutrophiles avec insuffisance rénale aiguë et hémorragie pulmonaire peut survenir après la vaccination contre le COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34859017/
Rapport de cas : myocardite probable après vaccin à ARNm Covid-19 chez un patient atteint de cardiomyopathie ventriculaire gauche arythmogène : https://pubmed.ncbi.nlm.nih.gov/34712717/
Rapport de cas : Jetez un deuxième regard : Thrombose veineuse cérébrale liée à la vaccination contre le Covid-19 et syndrome de thrombocytopénie thrombotique : https://pubmed.ncbi.nlm.nih.gov/34880826/
Rapport de cas : thrombocytopénie thrombotique immunitaire induite par le vaccin chez un patient atteint d’un cancer du pancréas après vaccination avec l’ARN messager-1273 : https://pubmed.ncbi.nlm.nih.gov/34790684/
Thrombose de l’artère coeliaque et de l’artère splénique compliquée d’un infarctus splénique 7 jours après la première dose du vaccin d’Oxford, relation causale ou coïncidence : https://pubmed.ncbi.nlm.nih.gov/34261633/
Thrombose du sinus veineux central avec hémorragie sous-arachnoïdienne après vaccination par ARNm contre le COVID-19 : ces rapports sont-ils simplement une coïncidence : https://pubmed.ncbi.nlm.nih.gov/34478433/
Thrombose du sinus veineux central avec hémorragie sous-arachnoïdienne après vaccination par ARNm contre le COVID-19 : ces rapports sont-ils simplement une coïncidence : https://pubmed.ncbi.nlm.nih.gov/34478433/
Thrombose des sinus veineux cérébraux après vaccination contre le COVID-19 : Prise en charge neurologique et radiologique : https://pubmed.ncbi.nlm.nih.gov/34327553/
Thrombose des sinus veineux cérébraux après vaccination contre le COVID-19 : prise en charge neurologique et radiologique : https://pubmed.ncbi.nlm.nih.gov/34327553/
Thrombose des sinus veineux cérébraux et thrombocytopénie après vaccination contre le COVID-19 : à propos de deux cas au Royaume-Uni : https://pubmed.ncbi.nlm.nih.gov/33857630/
Thrombose des sinus veineux cérébraux et événements thrombotiques après les vaccins vectoriels contre la COVID-19 : revue systématique et méta-analyse : https://pubmed.ncbi.nlm.nih.gov/34610990/
Thrombose des sinus veineux cérébraux suite à une vaccination contre le SRAS-CoV-2 : une analyse des cas signalés à l’Agence européenne des médicaments : https://pubmed.ncbi.nlm.nih.gov/34293217/
Thrombose des sinus veineux cérébraux suite à une vaccination par ChAdOx1 : premier cas de thrombose certaine avec syndrome de thrombocytopénie en Inde : https://pubmed.ncbi.nlm.nih.gov/34706921/
Thrombose des sinus veineux cérébraux dans la population américaine, après la vaccination contre le SRAS-CoV-2 avec un adénovirus et après le COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34116145/
Thrombose du sinus veineux cérébral négative pour les anticorps anti-PF4 sans thrombocytopénie après immunisation avec le vaccin COVID-19 chez un homme indien âgé non comorbide traité avec une anticoagulation conventionnelle à base d’héparine-warfarine : https://www.sciencedirect.com/science/article/ pi/S1871402121002046
Thrombose du sinus veineux cérébral négative pour les anticorps anti-PF4 sans thrombocytopénie après immunisation avec le vaccin COVID-19 chez un homme indien âgé non comorbide traité avec une anticoagulation conventionnelle à base d’héparine-warfarine : https://pubmed.ncbi.nlm.nih.gov /34186376/
Thrombose du sinus veineux cérébral négative pour les anticorps anti-PF4 sans thrombocytopénie après immunisation avec le vaccin COVID-19 chez un homme indien âgé et non comorbide traité avec une anticoagulation conventionnelle à base d’héparine-warfarine :. https://www.sciencedirect.com/science/article/pii/S1871402121002046 .
Thrombose du sinus veineux cérébral, embolie pulmonaire et thrombocytopénie après vaccination contre le COVID-19 chez un Taïwanais : à propos d’un cas et revue de la littérature : https://pubmed.ncbi.nlm.nih.gov/34630307/
Thrombose veineuse cérébrale après vaccination contre le COVID-19 : le risque de thrombose est-il augmenté par l’administration intravasculaire du vaccin : https://pubmed.ncbi.nlm.nih.gov/34286453/
Thrombose veineuse cérébrale et thrombocytopénie induite par le vaccin.
Thrombose veineuse cérébrale et thrombocytopénie induite par le vaccin.a. Oxford-AstraZeneca COVID-19 : une occasion manquée d’un retour d’expérience rapide : https://pubmed.ncbi.nlm.nih.gov/34033927/
Lymphadénopathie cervicale après vaccination contre la maladie à coronavirus 2019 : caractéristiques cliniques et implications pour les services de lutte contre le cancer de la tête et du cou : https://pubmed.ncbi.nlm.nih.gov/34526175/
Thrombocytopénie associée au vaccin ChAdOx1 nCoV-19 : trois cas de thrombocytopénie immunitaire après 107 720 doses de vaccination ChAdOx1 en Thaïlande : https://pubmed.ncbi.nlm.nih.gov/34483267/
Chai, Q., Nygaard, U., Schmidt, RC, Zaremba, T., Moller, AM et Thorvig, CM (2022). Syndrome inflammatoire multisystémique chez un adolescent de sexe masculin après son deuxième vaccin Pfizer-BioNTech COVID-19. Acta Paediatr, 111(1), 125-127. est ce que je:10.1111/apa.16141. https://www.ncbi.nlm.nih.gov/pubmed/34617315
Chamling, B., Vehof, V., Drakos, S., Weil, M., Stalling, P., Vahlhaus, C., . . . Yilmaz, A. (2021). Apparition d’une myocardite aiguë de type infarctus après vaccination contre le COVID-19 : simple coïncidence accidentelle ou plutôt myocardite auto-immune associée à la vaccination ? Clin Res Cardiol, 110(11), 1850-1854. est ce que je:10.1007/s00392-021-01916-w. https://www.ncbi.nlm.nih.gov/pubmed/34333695
Chang, JC et Hawley, HB (2021). Thrombocytopénie et thrombose associées au vaccin : endothéliopathie veineuse conduisant à une micro-macrothrombose veineuse combinée. Medicina (Kaunas), 57(11). est ce que je:10.3390/medicina57111163. https://www.ncbi.nlm.nih.gov/pubmed/34833382
Modification de la viscosité du sang après la vaccination contre le COVID-19 : estimation pour les personnes présentant un syndrome métabolique sous-jacent : https://pubmed.ncbi.nlm.nih.gov/34868465/
Chelala, L., Jeudy, J., Hossain, R., Rosenthal, G., Pietris, N. et White, C. (2021). Résultats de l’IRM cardiaque de myocardite après la vaccination par l’ARNm du COVID-19 chez les adolescents. AJR Am J Roentgenol. est ce que je:10.2214/JR.21.26853. https://www.ncbi.nlm.nih.gov/pubmed/34704459
Douleur thoracique avec redéveloppement anormal de l’électrocardiogramme après injection du vaccin COVID-19 fabriqué par Moderna : https://pubmed.ncbi.nlm.nih.gov/34866106/
Choi, S., Lee, S., Seo, JW, Kim, MJ, Jeon, YH, Park, JH, . . . Yeo, Nouvelle-Écosse (2021). Mort subite induite par la myocardite après la vaccination contre le COVID-19 à ARNm BNT162b2 en Corée : rapport de cas axé sur les résultats histopathologiques. J coréen Med Sci, 36(40), e286. est ce que je:10.3346/jkms.2021.36.e286. https://www.ncbi.nlm.nih.gov/pubmed/34664804
Chouchana, L., Blet, A., Al-Khalaf, M., Kafil, TS, Nair, G., Robblee, J., . . . Liu, PP (2021). Caractéristiques des réactions cardiaques inflammatoires après la vaccination à ARNm contre le COVID-19 au niveau mondial. Clin Pharmacol Ther. est ce que je:10.1002/cpt.2499. https://www.ncbi.nlm.nih.gov/pubmed/34860360
Chua, GT, Kwan, MYW, Chui, CSL, Smith, RD, Cheung, EC, Tian, T., . . . IP, P. (2021). Épidémiologie de la myocardite/péricardite aiguë chez les adolescents de Hong Kong après la vaccination Comirnaty. Clin Infect Dis. est ce que je:10.1093/cid/ciab989. https://www.ncbi.nlm.nih.gov/pubmed/34849657
Clarke, R. et Ioannou, A. (2021). Faut-il utiliser la cartographie T2 en cas de myocardite récurrente pour différencier l’inflammation aiguë de la cicatrice chronique ? J Pédiatre. est ce que je:10.1016/j.jpeds.2021.12.026. https://www.ncbi.nlm.nih.gov/pubmed/34933012
Spectre clinique et histopathologique des réactions cutanées indésirables retardées après la vaccination contre le COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34292611/
Corrélats cliniques et pathologiques des réactions cutanées au vaccin COVID-19, y compris le V-REPP : une étude basée sur un registre : https://pubmed.ncbi.nlm.nih.gov/34517079/
Suspicion clinique de myocardite temporairement liée à la vaccination contre le COVID-19 chez les adolescents et les jeunes adultes : https://pubmed.ncbi.nlm.nih.gov/34865500/
Variante clinique du syndrome de Guillain-Barré avec diplégie faciale importante après le vaccin AstraZeneca 2019 contre la maladie à coronavirus : https://pubmed.ncbi.nlm.nih.gov/34808658/
Les coagulopathies après la vaccination contre le SRAS-CoV-2 peuvent provenir d’un effet combiné de la protéine de pointe du SRAS-CoV-2 et des voies de signalisation activées par le vecteur adénovirus : https://pubmed.ncbi.nlm.nih.gov/34639132/
Colaneri, M., De Filippo, M., Licari, A., Marseglia, A., Maiocchi, L., Ricciardi, A., . . . Bruno, R. (2021). Vaccination contre la COVID et exacerbation de l’asthme : pourrait-il y avoir un lien ? Int J Infect Dis, 112, 243-246. est ce que je:10.1016/j.ijid.2021.09.026. https://www.ncbi.nlm.nih.gov/pubmed/34547487
Commentaires sur la thrombose après vaccination : la séquence leader de la protéine Spike pourrait être responsable de la thrombose et de la thrombocytopénie médiée par les anticorps : https://pubmed.ncbi.nlm.nih.gov/34788138
Commentaires sur la thrombose après vaccination : la séquence leader de la protéine Spike pourrait être responsable de la thrombose et de la thrombocytopénie médiée par les anticorps : https://pubmed.ncbi.nlm.nih.gov/34788138/
Comparaison des effets indésirables des médicaments entre quatre vaccins COVID-19 en Europe à l’aide de la base de données EudraVigilance : Thrombose dans des sites inhabituels : https://pubmed.ncbi.nlm.nih.gov/34375510/
Préoccupations concernant les effets indésirables de la thrombocytopénie et de la thrombose après la vaccination contre le COVID-19 à vecteur adénovirus : https://pubmed.ncbi.nlm.nih.gov/34541935/
Vaccin contre la maladie à coronavirus 2019 (COVID-19) dans le lupus érythémateux systémique et la vascularite associée aux anticorps anti-cytoplasmiques des neutrophiles : https://pubmed.ncbi.nlm.nih.gov/33928459/
Le vaccin contre la maladie à coronavirus 2019 imite les métastases ganglionnaires chez les patients subissant un suivi pour un cancer de la peau : une étude monocentrique : https://pubmed.ncbi.nlm.nih.gov/34280870/
La vaccination COV2-S peut révéler une thrombophilie héréditaire : thrombose massive du sinus veineux cérébral chez un jeune homme ayant une numération plaquettaire normale : https://pubmed.ncbi.nlm.nih.gov/34632750/
La lymphadénopathie induite par la vaccination à ARNm contre le COVID-19 imite la progression du lymphome sur la TEP/TDM au FDG : https://pubmed.ncbi.nlm.nih.gov/33591026/
Lymphadénopathie post-vaccination au COVID-19 : rapport sur les résultats cytologiques de biopsie par aspiration à l’aiguille fine : https://pubmed.ncbi.nlm.nih.gov/34432391/
Vaccination contre le COVID-19 et lymphadénopathie cervicale inférieure dans une clinique de deux semaines pour les tumeurs du cou : un audit de suivi : https://pubmed.ncbi.nlm.nih.gov/33947605/
Lymphadénopathie induite par la vaccination COVID-19 dans une clinique spécialisée d’imagerie mammaire en Israël : analyse de 163 cas : https://pubmed.ncbi.nlm.nih.gov/34257025/
Vaccination COVID-19 : informations sur la survenue de thromboses artérielles et veineuses à partir des données de VigiBase : https://pubmed.ncbi.nlm.nih.gov/33863748/
Thrombose immunitaire induite par le vaccin COVID-19 avec thrombocytopénie thrombotique (VITT) et nuances de gris dans la formation de thrombus : https://pubmed.ncbi.nlm.nih.gov/34624910/
Lymphadénopathie axillaire et cervicale liée au vaccin COVID-19 chez les patientes atteintes d’un cancer du sein actuel ou antérieur et d’autres tumeurs malignes : résultats d’imagerie transversale sur IRM, tomodensitométrie et TEP-CT : https://pubmed.ncbi.nlm.nih.gov/ 34719892/
Lymphadénopathie axillaire liée au vaccin COVID-19 chez les patientes atteintes d’un cancer du sein : série de cas avec revue de la littérature : https://pubmed.ncbi.nlm.nih.gov/34836672/
COVID-19 : les leçons de la tragédie norvégienne doivent être prises en compte dans la planification du lancement du vaccin dans les pays les moins développés/en développement : https://pubmed.ncbi.nlm.nih.gov/34435142/
Rapport cumulatif d’événements indésirables d’anaphylaxie suite à des injections de vaccin à ARNm COVID-19 (Pfizer-BioNTech) au Japon : rapport du premier mois : https://pubmed.ncbi.nlm.nih.gov/34347278/
Effets indésirables cutanés de 35 229 doses du vaccin COVID-19 Sinovac et AstraZeneca COVID-19 : une étude de cohorte prospective chez les agents de santé : https://pubmed.ncbi.nlm.nih.gov/34661934/
Vascularite lymphoïde cutanée après administration de la deuxième dose d’AZD1222 (Oxford-AstraZeneca) Syndrome respiratoire aigu sévère Vaccin contre le coronavirus 2 : hasard ou causalité : https://pubmed.ncbi.nlm.nih.gov/34726187/
Das, BB, Kohli, U., Ramachandran, P., Nguyen, HH, Greil, G., Hussain, T., . . . Khan, D. (2021). Myopéricardite après vaccination contre la maladie à coronavirus à ARN messager 2019 chez les adolescents de 12 à 18 ans. J Pediatr, 238, 26-32 e21. est ce que je:10.1016/j.jpeds.2021.07.044. https://www.ncbi.nlm.nih.gov/pubmed/34339728
Das, BB, Moskowitz, WB, Taylor, MB et Palmer, A. (2021). Myocardite et péricardite après la vaccination à ARNm contre le COVID-19 : que savons-nous jusqu’à présent ? Enfants (Bâle), 8(7). est ce que je:10.3390/enfants8070607. https://www.ncbi.nlm.nih.gov/pubmed/34356586
Deb, A., Abdelmalek, J., Iwuji, K. et Nugent, K. (2021). Lésions myocardiques aiguës suite à la vaccination contre le COVID-19 : rapport de cas et examen des preuves actuelles provenant de la base de données du système de notification des événements indésirables liés aux vaccins. J Prim Care Community Health, 12, 21501327211029230. est ce que je:10.1177/21501327211029230. https://www.ncbi.nlm.nih.gov/pubmed/34219532
Céphalée retardée après la vaccination contre le COVID-19 : un signe avant-coureur d’une thrombose veineuse cérébrale induite par le vaccin : https://pubmed.ncbi.nlm.nih.gov/34535076/
Diagnostic et traitement de la thrombose du sinus veineux cérébral avec thrombopénie thrombotique immuno-immune induite par le vaccin : https://pubmed.ncbi.nlm.nih.gov/33914590/
Dickey, JB, Albert, E., Badr, M., Laraja, KM, Sena, LM, Gerson, DS, . . . Aurigemma, médecin généraliste (2021). Une série de patients atteints de myocardite après une vaccination contre le SRAS-CoV-2 avec l’ARNm-1279 et le BNT162b2. Imagerie cardiovasculaire JACC, 14(9), 1862-1863. est ce que je:10.1016/j.jcmg.2021.06.003. https://www.ncbi.nlm.nih.gov/pubmed/34246585
Effets différentiels de la deuxième dose du vaccin à ARNm du SRAS-CoV-2 sur l’immunité des lymphocytes T chez les individus non traités auparavant et ceux récupérés du COVID-19 https://www.biorxiv.org/content/10.1101/2021.03.22.436441v1
Dimopoulou, D., Spyridis, N., Vartzelis, G., Tsolia, MN et Maritsi, DN (2021). Sécurité et tolérabilité du vaccin à ARNm COVID-19 chez les adolescents atteints d’arthrite juvénile idiopathique sous traitement par inhibiteurs du TNF. Arthrite rhumatol. est ce que je:10.1002/art.41977. https://www.ncbi.nlm.nih.gov/pubmed/34492161
Dimopoulou, D., Vartzelis, G., Dasoula, F., Tsolia, M. et Maritsi, D. (2021). Immunogénicité du vaccin à ARNm COVID-19 chez les adolescents atteints d’arthrite juvénile idiopathique sous traitement par inhibiteurs du TNF. Ann Rheum Dis. est ce que je:10.1136/annrheumdis-2021-221607. https://www.ncbi.nlm.nih.gov/pubmed/34844930
Voulez-vous encore plus de preuves ? Voici 140 références à des événements indésirables liés à l’injection de COVID qui peuvent survenir chez les enfants. Une lymphadénopathie supraclaviculaire aiguë coïncidant avec la vaccination intramusculaire à ARNm contre le COVID-19 peut être liée à la technique d’injection du vaccin, Espagne, janvier et février 2021 : https https://pubmed.ncbi.nlm.nih.gov/33706861/
Premiers résultats du traitement par la bivalirudine pour la thrombocytopénie thrombotique et la thrombose du sinus veineux cérébral après vaccination avec Ad26.COV2.S : https://pubmed.ncbi.nlm.nih.gov/34226070/
Ehrlich, P., Klingel, K., Ohlmann-Knafo, S., Huttinger, S., Sood, N., Pickuth, D. et Kindermann, M. (2021). Myocardite lymphocytaire prouvée par biopsie après la première vaccination par ARNm contre le COVID-19 chez un homme de 40 ans : rapport de cas. Clin Res Cardiol, 110(11), 1855-1859. est ce que je:10.1007/s00392-021-01936-6. https://www.ncbi.nlm.nih.gov/pubmed/34487236
El Sahly, HM, Baden, LR, Essink, B., Doblecki-Lewis, S., Martin, JM, Anderson, EJ, . . . Groupe, CS (2021). Efficacité du vaccin ARNm-1273 SARS-CoV-2 à la fin de la phase en aveugle. N Engl J Med, 385(19), 1774-1785. est ce que je:10.1056/NEJMoa2113017. https://www.ncbi.nlm.nih.gov/pubmed/34551225
Taux élevés d’anaphylaxie après vaccination avec le vaccin à ARNm Pfizer BNT162b2 contre le COVID-19 chez le personnel de santé japonais ; une analyse secondaire des données de sécurité initiales post-approbation : https://pubmed.ncbi.nlm.nih.gov/34128049/
Traitement endovasculaire de la thrombose du sinus veineux cérébral et de la thrombocytopénie induites par le vaccin après vaccination avec ChAdOx1 nCoV-19 : rapport de trois cas : https://pubmed.ncbi.nlm.nih.gov/34782400/
Épidémiologie et caractéristiques cliniques de la myocardite/péricardite avant l’introduction du vaccin à ARNm COVID-19 chez les enfants coréens : une étude multicentrique : https://pubmed.ncbi.nlm.nih.gov/34402230/
Evolution de la lymphadénopathie hypermétabolique axillaire hypermétabolique bilatérale sur TEP/TDM au FDG après vaccination COVID-19 à 2 doses : https://pubmed.ncbi.nlm.nih.gov/34735411/
Exacerbation du psoriasis en plaques après les vaccins à ARNm inactivé contre la COVID-19 et BNT162b2 : rapport de deux cas : https://pubmed.ncbi.nlm.nih.gov/34427024/
Facetti, S., Giraldi, M., Vecchi, AL, Rogiani, S. et Nassiacos, D. (2021). Myocardite aiguë chez un jeune adulte deux jours après vaccination Pfizer. GItal Cardiol (Rome), 22(11), 891-893. est ce que je:10.1714/3689.36746. https://www.ncbi.nlm.nih.gov/pubmed/34709227
Paralysie du nerf facial après administration de vaccins à ARNm contre la COVID-19 : analyse de la base de données d’auto-évaluation : https://pubmed.ncbi.nlm.nih.gov/34492394/
Exacerbation fatale du syndrome de thrombopénie thrombotique induite par ChadOx1-nCoV-19 après un traitement initial réussi avec des immunoglobulines intraveineuses : justification de la surveillance des taux d’immunoglobulines G : https://pubmed.ncbi.nlm.nih.gov/34382387/
Syndrome de fuite capillaire systémique fatale après vaccination contre le SRAS-COV-2 chez un patient atteint de myélome multiple : https://pubmed.ncbi.nlm.nih.gov/34459725/
Fazlollahi, A., Zahmatyar, M., Noori, M., Nejadghaderi, SA, Sullman, MJM, Shekarriz-Foumani, R., . . . Safiri, S. (2021). Complications cardiaques suite aux vaccins à ARNm contre la COVID-19 : une revue systématique des rapports de cas et des séries de cas. Rév Med Virol, e2318. est ce que je:10.1002/rmv.2318. https://www.ncbi.nlm.nih.gov/pubmed/34921468
Fazolo , T. , Lima , K. , Fontoura , JC , de Souza , PO , Hilario , G. , Zorzetto , R. , . . . Bonorino, C. (2021). Les patients pédiatriques atteints de COVID-19 dans le sud du Brésil présentent un ARNm viral abondant et de fortes réponses antivirales spécifiques. Commun Nat, 12(1), 6844. est ce que je:10.1038/s41467-021-27120-y. https://www.ncbi.nlm.nih.gov/pubmed/34824230
Fikenzer, S. et Laufs, U. (2021). Correction de : Réponse à la lettre aux éditeurs faisant référence à Fikenzer, S., Uhe, T., Lavall, D., Rudolph, U., Falz, R., Busse, M., Hepp, P. et Laufs, U . (2020). Effets des masques chirurgicaux et FFP2/N95 sur la capacité d’exercice cardio-pulmonaire. Recherche clinique en cardiologie : journal officiel de la Société allemande de cardiologie, 1-9. Publication en ligne anticipée. https://doi.org/10.1007/s00392-020-01704-y . Clin Res Cardiol, 110(8), 1352. est ce que je:10.1007/s00392-021-01896-x. https://www.ncbi.nlm.nih.gov/pubmed/34170372
Première description de la vascularite à complexes immuns après vaccination contre le COVID-19 avec BNT162b2 : rapport de cas : https://pubmed.ncbi.nlm.nih.gov/34530771/
Première dose des vaccins ChAdOx1 et BNT162b2 COVID-19 et événements thrombocytopéniques, thromboemboliques et hémorragiques en Écosse : https://pubmed.ncbi.nlm.nih.gov/34108714/
Première dose des vaccins ChAdOx1 et BNT162b2 contre la COVID-19 et événements thrombocytopéniques, thromboemboliques et hémorragiques en Écosse : https://pubmed.ncbi.nlm.nih.gov/34108714/
Foltran, D., Delmas, J., Flumian, J., De Paoli, P., Salvo, F., Gautier, S., . . . Montastruc, F. (2021). Myocardite et péricardite chez les adolescents après la première et la deuxième doses de vaccins à ARNm contre la COVID-19. Résultats Eur Heart J Qual Care Clin. est ce que je:10.1093/ehjqcco/qcab090. https://www.ncbi.nlm.nih.gov/pubmed/34849667
Forgacs, D., Jang, H., Abreu, RB, Hanley, HB, Gattiker, JL, Jefferson, AM et Ross, TM (2021). Les vaccins à ARNm du SRAS-CoV-2 suscitent différentes réponses chez les humains immunologiquement naïfs et pré-immunisés. Front Immunol, 12, 728021. est ce que je:10.3389/fimmu.2021.728021. https://www.ncbi.nlm.nih.gov/pubmed/34646267
myocardite fulminante et hyperinflammation systémique associées temporellement à la vaccination par ARNm BNT162b2 COVID-19 chez deux patients : https://pubmed.ncbi.nlm.nih.gov/34416319/
Furer, V., Eviatar, T., Zisman, D., Peleg, H., Paran, D., Levartovsky, D., . . . Elkayam, O. (2021). Immunogénicité et sécurité du vaccin à ARNm BNT162b2 contre la COVID-19 chez les patients adultes atteints de maladies rhumatismales inflammatoires auto-immunes et dans la population générale : une étude multicentrique. Ann Rheum Dis, 80(10), 1330-1338. est ce que je:10.1136/annrheumdis-2021-220647. https://www.ncbi.nlm.nih.gov/pubmed/34127481
Images TEP numériques Ga-DOTATOC des infiltrats de cellules inflammatoires dans la myocardite après vaccination avec le COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34746968/
Galindo, R., Chow, H. et Rongkavilit, C. (2021). COVID-19 chez les enfants : manifestations cliniques et interventions pharmacologiques, y compris les essais de vaccins. Pediatr Clin North Am, 68(5), 961-976. est ce que je:10.1016/j.pcl.2021.05.004. https://www.ncbi.nlm.nih.gov/pubmed/34538306
Gargano, JW, Wallace, M., Hadler, SC, Langley, G., Su, JR, Oster, ME, . . . Oliver, SE (2021). Utilisation du vaccin à ARNm contre la COVID-19 après des rapports de myocardite chez les receveurs du vaccin : mise à jour du Comité consultatif sur les pratiques d’immunisation – États-Unis, juin 2021. MMWR Morb Mortal Wkly Rep, 70(27), 977-982. est ce que je:10.15585/mmwr.mm7027e2. https://www.ncbi.nlm.nih.gov/pubmed/34237049
Gatti, M., Raschi, E., Moretti, U., Ardizzoni, A., Poluzzi, E. et Diemberger, I. (2021). Vaccination contre la grippe et myo-péricardite chez les patients recevant des inhibiteurs de point de contrôle immunitaire : étude de la probabilité d’interaction via le système de notification des événements indésirables liés aux vaccins et VigiBase. Vaccins (Bâle), 9(1). est ce que je:10.3390/vaccins9010019. https://www.ncbi.nlm.nih.gov/pubmed/33406694
Gautam, N., Saluja, P., Fudim, M., Jambhekar, K., Pandey, T. et Al’Aref, S. (2021). Une présentation tardive de la myocardite induite par le vaccin COVID-19. Cureus, 13(9), e17890. est ce que je:10.7759/cureus.17890. https://www.ncbi.nlm.nih.gov/pubmed/34660088
Greenhawt, M., Abrams, EM, Shaker, M., Chu, DK, Khan, D., Akin, C., . . . D’or, DBK (2021). Le risque de réaction allergique aux vaccins contre le SRAS-CoV-2 et l’évaluation et la gestion recommandées : un examen systématique, une méta-analyse, une évaluation GRADE et une approche consensuelle internationale. J Allergy Clin Immunol Pract, 9(10), 3546-3567. est ce que je:10.1016/j.jaip.2021.06.006. https://www.ncbi.nlm.nih.gov/pubmed/34153517
Hématurie macroscopique après vaccination contre le coronavirus 2 du syndrome respiratoire aigu sévère chez 2 patients atteints de néphropathie à IgA : https://pubmed.ncbi.nlm.nih.gov/33771584/
Syndrome de Guillain-Barré après la première dose du vaccin contre le SRAS-CoV-2 : un événement temporaire, pas une association causale : https://pubmed.ncbi.nlm.nih.gov/33968610/
Syndrome de Guillain-Barré se présentant avec une diplégie faciale après vaccination contre le COVID-19 chez deux patients : https://pubmed.ncbi.nlm.nih.gov/34649856/
Syndrome de Guillain-Barré après vaccination contre le SRAS-CoV-2 chez un patient présentant un syndrome de Guillain-Barré associé au vaccin : https://pubmed.ncbi.nlm.nih.gov/34810163/
Syndrome de Guillain-Barré après la première dose du vaccin Pfizer-BioNTech COVID-19 : rapport de cas et revue des cas signalés : https://pubmed.ncbi.nlm.nih.gov/34796417/
Haaf, P., Kuster, GM, Mueller, C., Berger, CT, Monney, P., Burger, P., . . . Tanner, FC (2021). Le risque très faible de myocardite et de péricardite après la vaccination à ARNm contre la COVID-19 ne devrait pas décourager la vaccination. Swiss Med Weekly, 151, w30087. est ce que je:10.4414/smw.2021.w30087. https://www.ncbi.nlm.nih.gov/pubmed/34668687
Hasnie, AA, Hasnie, UA, Patel, N., Aziz, MU, Xie, M., Lloyd, SG et Prabhu, SD (2021). Périmyocardite après la première dose du vaccin ARNm-1273 SARS-CoV-2 (Moderna) chez un jeune homme en bonne santé : à propos d’un cas. Trouble cardiovasculaire BMC, 21(1), 375. est ce que je:10.1186/s12872-021-02183-3. https://www.ncbi.nlm.nih.gov/pubmed/34348657
Hause, AM, Gee, J., Baggs, J., Abara, WE, Marquez, P., Thompson, D., . . . Shay, Danemark (2021). Sécurité du vaccin contre la COVID-19 chez les adolescents âgés de 12 à 17 ans – États-Unis, 14 décembre 2020-16 juillet 2021. MMWR Morb Mortal Wkly Rep, 70(31), 1053-1058. est ce que je:10.15585/mmwr.mm7031e1. https://www.ncbi.nlm.nih.gov/pubmed/34351881
Céphalée attribuée à la vaccination contre le COVID-19 (coronavirus SRAS-CoV-2) avec le vaccin ChAdOx1 nCoV-19 (AZD1222) : une étude de cohorte observationnelle multicentrique : https://pubmed.ncbi.nlm.nih.gov/34313952/
Helms, JM, Ansteatt, KT, Roberts, JC, Kamatam, S., Foong, KS, Labayog, JS et Tarantino, MD (2021). Thrombopénie immunitaire sévère et réfractaire survenant après le vaccin contre le SRAS-CoV-2. J Blood Med, 12, 221-224. est ce que je:10.2147/JBM.S307047. https://www.ncbi.nlm.nih.gov/pubmed/33854395
Hippisley-Cox, J., Patone, M., Mei, XW, Saatci, D., Dixon, S., Khunti, K., . . . Coupland, CAC (2021). Risque de thrombocytopénie et de thromboembolie après vaccination contre le covid-19 et test positif au SRAS-CoV-2 : étude de série de cas autocontrôlée. BMJ, 374, n1931. est ce que je:10.1136/bmj.n1931. https://www.ncbi.nlm.nih.gov/pubmed/34446426
Ho, JS, Sia, CH, Ngiam, JN, Loh, PH, Chew, NW, Kong, WK et Poh, KK (2021). Un examen de la vaccination contre le COVID-19 et des manifestations cardiaques signalées. Singapour Med J. est ce que je:10.11622/smedj.2021210. https://www.ncbi.nlm.nih.gov/pubmed/34808708
Réponse humorale induite par la vaccination Prime-Boost avec les vaccins ChAdOx1 nCoV-19 et BNT162b2 à ARNm chez un patient atteint de sclérose en plaques traité par tériflunomide : https://pubmed.ncbi.nlm.nih.gov/34696248/
Lymphadénopathie hypermétabolique après administration du vaccin à ARNm BNT162b2 Covid-19 : incidence évaluée par [ 18 F] TEP-CT FDG et pertinence pour l’interprétation de l’étude : https://pubmed.ncbi.nlm.nih.gov/33774684/
Iguchi, T., Umeda, H., Kojima, M., Kanno, Y., Tanaka, Y., Kinoshita, N. et Sato, D. (2021). Déclaration cumulative des événements indésirables de l’anaphylaxie après les injections du vaccin à ARNm COVID-19 (Pfizer-BioNTech) au Japon : le rapport du premier mois. Drug Saf, 44(11), 1209-1214. est ce que je:10.1007/s40264-021-01104-9. https://www.ncbi.nlm.nih.gov/pubmed/34347278
Imagerie et résultats hématologiques en matière de thrombose et de thrombocytopénie après vaccination avec ChAdOx1 nCoV-19 (AstraZeneca) : https://pubmed.ncbi.nlm.nih.gov/34402666/
L’administration immédiate d’immunoglobulines intraveineuses à haute dose, suivie d’un traitement direct avec des inhibiteurs de la thrombine, est cruciale pour la survie en cas de thrombocytopénie thrombotique immunitaire induite par le vaccin.
Des immunoglobulines intraveineuses à haute dose immédiate, suivies d’un traitement direct avec des inhibiteurs de la thrombine, sont cruciales pour la survie dans la thrombocytopénie thrombotique immunitaire induite par le vaccin VITT adenoviral à vecteur Sars-Covid-19 avec thrombose veineuse du sinus cérébral et de la veine porte : https://pubmed. ncbi.nlm.nih.gov/34023956/
Thrombose immunitaire et thrombopénie (VITT) associées au vaccin COVID-19 : recommandations diagnostiques et thérapeutiques pour un nouveau syndrome : https://pubmed.ncbi.nlm.nih.gov/33987882/
Épidémies de maladie à médiation immunitaire ou nouvelle apparition de maladie chez 27 sujets après vaccination par ARNm/ADN contre le SRAS-CoV-2 : https://pubmed.ncbi.nlm.nih.gov/33946748/
Épidémies de maladie à médiation immunitaire ou maladie d’apparition récente chez 27 sujets après vaccination par ARNm/ADN contre le SRAS-CoV-2 : https://pubmed.ncbi.nlm.nih.gov/33946748/
Pratiques de vaccination et risque d’anaphylaxie : une mise à jour actuelle et complète des données de vaccination contre le COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34269740/
La mémoire immunologique chez les patients atteints de COVID-19 léger et les donneurs non exposés révèlent des réponses persistantes des lymphocytes T après une infection par le SRAS-CoV-2 https://pubmed.ncbi.nlm.nih.gov/33777028/
Étude observationnelle en milieu hospitalier sur les troubles neurologiques chez des patients récemment vaccinés avec des vaccins à ARNm contre la COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34688190/
Incidence des accidents vasculaires cérébraux ischémiques aigus après vaccination contre le coronavirus en Indonésie : série de cas : https://pubmed.ncbi.nlm.nih.gov/34579636/
Risque accru d’urticaire/œdème de Quincke après la vaccination par l’ARNm BNT162b2 contre le COVID-19 chez les agents de santé prenant des inhibiteurs de l’ECA : https://pubmed.ncbi.nlm.nih.gov/34579248/
Induction et exacerbation du lupus érythémateux cutané subaigu après une vaccination contre le SRAS-CoV-2 à base d’ARNm ou de vecteur adénoviral : https://pubmed.ncbi.nlm.nih.gov/34291477/
Inflammation et activation plaquettaire après les vaccins contre la COVID-19 : mécanismes possibles à l’origine de la thrombocytopénie et de la thrombose immunitaires induites par le vaccin : https://pubmed.ncbi.nlm.nih.gov/34887867/
Aperçus d’un modèle murin de myopéricardite induite par le vaccin à ARNm COVID-19 : l’injection intraveineuse accidentelle d’un vaccin pourrait-elle induire une myopéricardite ?
Aperçus d’un modèle murin de myopéricardite induite par le vaccin à ARNm COVID-19 : l’injection intraveineuse accidentelle d’un vaccin pourrait-elle induire une myopéricardite : https://pubmed.ncbi.nlm.nih.gov/34453510/
Hémorragie intracérébrale et thrombocytopénie après le vaccin AstraZeneca COVID-19 : défis cliniques et diagnostiques de la thrombocytopénie thrombotique induite par le vaccin : https://pubmed.ncbi.nlm.nih.gov/34646685/
Hémorragie intracérébrale associée à une thrombocytopénie thrombotique induite par le vaccin après la vaccination ChAdOx1 nCOVID-19 chez une femme enceinte : https://pubmed.ncbi.nlm.nih.gov/34261297/
Hémorragie intracérébrale due au syndrome de thrombose avec thrombopénie après vaccination contre le COVID-19 : premier cas mortel en Corée : https://pubmed.ncbi.nlm.nih.gov/34402235/
L’injection intraveineuse du vaccin à ARNm contre la maladie à coronavirus 2019 (COVID-19) peut induire une myopéricardite aiguë dans un modèle murin : https://t.co/j0IEM8cMXI
Ioannou, A. (2021a). La myocardite doit être envisagée chez les personnes présentant une augmentation de la troponine et des artères coronaires dégagées après la vaccination Pfizer-BioNTech contre la COVID-19. QJM. est ce que je:10.1093/qjmed/hcab231. https://www.ncbi.nlm.nih.gov/pubmed/34463755
Ioannou, A. (2021b). La cartographie T2 doit être utilisée en cas de suspicion de myocardite pour confirmer un processus inflammatoire aigu. QJM. est ce que je:10.1093/qjmed/hcab326. https://www.ncbi.nlm.nih.gov/pubmed/34931681
Isaac, A., Feisst, A. et Luetkens, JA (2021). Myocardite après la vaccination contre le COVID-19. Radiologie, 301(1), E378-E379. est ce que je:10.1148/radiol.2021211766. https://www.ncbi.nlm.nih.gov/pubmed/34342500
L’accident vasculaire cérébral ischémique comme caractéristique de la thrombocytopénie thrombotique immunitaire induite par la vaccination ChAdOx1-nCoV-19 : https://pubmed.ncbi.nlm.nih.gov/34035134/
Embolie pulmonaire isolée après vaccination contre le COVID : 2 rapports de cas et un examen des complications et du suivi de l’embolie pulmonaire aiguë : https://pubmed.ncbi.nlm.nih.gov/34804412/
Istampoulouoglou, I., Dimitriou, G., Spani, S., Christ, A., Zimmermanns, B., Koechlin, S., . . . Leuppi-Taegtmeyer, Alberta (2021). Myocardite et péricardite associées à la vaccination à ARNm contre le COVID-19 : cas d’un centre régional de pharmacovigilance. Glob Cardiol Sci Pract, 2021(3), e202118. est ce que je:10.21542/gcsp.2021.18. https://www.ncbi.nlm.nih.gov/pubmed/34805376
Jaafar, R., Boschi, C., Aherfi, S., Bancod, A., Le Bideau, M., Edouard, S., . . . La Scola, B. (2021). Hétérogénéité individuelle élevée des activités neutralisantes contre la souche originale et neuf variantes différentes du SRAS-CoV-2. Virus, 13(11). est ce que je:10.3390/v13112177. https://www.ncbi.nlm.nih.gov/pubmed/34834983
Jain, SS, Steele, JM, Fonseca, B, Huang, S, Shah, S, Maskatia, SA,. . . Grosse-Wortmann, L. (2021). Myocardite associée à la vaccination contre le COVID-19 chez les adolescents. Pédiatrie, 148(5). est ce que je:10.1542/peds.2021-053427. https://www.ncbi.nlm.nih.gov/pubmed/34389692
Jhaveri, R., Adler-Shohet, FC, Blyth, CC, Chiotos, K., Gerber, JS, Green, M., . . . Zaoutis, T. (2021). Peser les risques de périmyocardite avec les avantages de la vaccination à ARNm du SRAS-CoV-2 chez les adolescents. J Pediatric Infect Dis Soc, 10(10), 937-939. est ce que je:10.1093/jpids/piab061. https://www.ncbi.nlm.nih.gov/pubmed/34270752
Kaneta, K., Yokoi, K., Jojima, K., Kotooka, N. et Node, K. (2021). Jeune homme atteint de myocardite après la vaccination par l’ARNm-1273 contre la maladie à coronavirus 2019 (COVID-19). Circ J. est ce que je:10.1253/circj.CJ-21-0818. https://www.ncbi.nlm.nih.gov/pubmed/34744118
Kaul, R., Sreenivasan, J., Goel, A., Malik, A., Bandyopadhyay, D., Jin, C., . . . Panza, JA (2021). Myocardite suite à la vaccination contre le COVID-19. Int J Cardiol Heart Vasc, 36, 100872. est ce que je:10.1016/j.ijcha.2021.100872. https://www.ncbi.nlm.nih.gov/pubmed/34568540
Khogali, F. et Abdelrahman, R. (2021). Présentation inhabituelle de périmyocardite aiguë après la vaccination Moderna contre le SRAS-COV-2 ARNm-1237. Cureus, 13(7), e16590. est ce que je:10.7759/cureus.16590. https://www.ncbi.nlm.nih.gov/pubmed/34447639
Kim, HW, Jenista, ER, Wendell, DC, Azevedo, CF, Campbell, MJ, Darty, SN, . . . Kim, RJ (2021). Patients atteints de myocardite aiguë après une vaccination à ARNm contre le COVID-19. JAMA Cardiol, 6(10), 1196-1201. est ce que je:10.1001/jamacardio.2021.2828. https://www.ncbi.nlm.nih.gov/pubmed/34185046
Kim, IC, Kim, H., Lee, HJ, Kim, JY et Kim, JY (2021). Imagerie cardiaque de la myocardite aiguë après la vaccination par ARNm contre le COVID-19. J coréen Med Sci, 36(32), e229. est ce que je:10.3346/jkms.2021.36.e229. https://www.ncbi.nlm.nih.gov/pubmed/34402228
King, WW, Petersen, MR, Matar, RM, Budweg, JB, Brown Crow, L. et Petersen, JW (2021). Myocardite suite à une vaccination par ARNm contre le SRAS-CoV-2, une série de cas. Suis Heart J Plus, 8, 100042. est ce que je:10.1016/j.ahjo.2021.100042. https://www.ncbi.nlm.nih.gov/pubmed/34396358
Klein, NP, Lewis, N., Goddard, K., Fireman, B., Zerbo, O., Hanson, KE, . . . Weintraub, ES (2021). Surveillance des événements indésirables après la vaccination par ARNm contre le COVID-19. JAMA, 326(14), 1390-1399. est ce que je:10.1001/jama.2021.15072. https://www.ncbi.nlm.nih.gov/pubmed/34477808
Klimek, L., Bergmann, KC, Brehler, R., Pfutzner, W., Zuberbier, T., Hartmann, K., . . . Ver, M. (2021). Gestion pratique des réactions allergiques aux vaccins COVID-19 : un document de position des sociétés allemandes et autrichiennes d’allergie AeDA, DGAKI, GPA et OGAI. Allergo J Int, 1-17. est ce que je:10.1007/s40629-021-00165-7. https://www.ncbi.nlm.nih.gov/pubmed/33898162
Klimek, L., Novak, N., Hamelmann, E., Werfel, T., Wagenmann, M., Taube, C., . . . Ver, M. (2021). Réactions allergiques sévères après vaccination contre le COVID-19 avec le vaccin Pfizer/BioNTech en Grande-Bretagne et aux États-Unis : Prise de position des sociétés allemandes d’allergie : Association médicale des allergologues allemands (AeDA), Société allemande d’allergologie et d’immunologie clinique (DGAKI) et Société pour Allergologie pédiatrique et médecine environnementale (GPA). Allergo J Int, 30(2), 51-55. est ce que je:10.1007/s40629-020-00160-4. https://www.ncbi.nlm.nih.gov/pubmed/33643776
Kohli, U., Desai, L., Chowdhury, D., Harahsheh, AS, Yonts, AB, Ansong, A., . . . Ang, JY (2021). Myopéricardite associée au vaccin à ARNm contre le coronavirus-19 chez les adolescents : une étude d’enquête. J Pédiatre. est ce que je:10.1016/j.jpeds.2021.12.025. https://www.ncbi.nlm.nih.gov/pubmed/34952008
Kostoff, RN, Calina, D., Kanduc, D., Briggs, MB, Vlachoyiannopoulos, P., Svistunov, AA et Tsatsakis, A. (2021a). Erratum « Pourquoi vaccinons-nous les enfants contre le COVID-19 ? » [Toxique. représentant 8C (2021) 1665-1684/1193]. Toxicol Rep, 8, 1981. est ce que je:10.1016/j.toxrep.2021.10.003. https://www.ncbi.nlm.nih.gov/pubmed/34642628
Kostoff, RN, Calina, D., Kanduc, D., Briggs, MB, Vlachoyiannopoulos, P., Svistunov, AA et Tsatsakis, A. (2021b). Pourquoi vaccinons-nous les enfants contre le COVID-19 ? Représentant Toxicol, 8, 1665-1684. est ce que je:10.1016/j.toxrep.2021.08.010. https://www.ncbi.nlm.nih.gov/pubmed/34540594
Kremsner, PG, Mann, P., Kroidl, A., Leroux-Roels, I., Schindler, C., Gabor, JJ, . . . Groupe, C.-N.-S. (2021). Sécurité et immunogénicité d’un candidat vaccin à base de nanoparticules d’ARNm-lipides contre le SRAS-CoV-2 : Un essai clinique randomisé de phase 1. Wien Klin Wochenschr, 133(17-18), 931-941. est ce que je:10.1007/s00508-021-01922-y. https://www.ncbi.nlm.nih.gov/pubmed/34378087
Kustin, T., Harel, N., Finkel, U., Perchik, S., Harari, S., Tahor, M., . . . En ligneStern, A. (2021). Preuve d’une augmentation des taux de percée des variantes préoccupantes du SRAS-CoV-2 chez les individus vaccinés avec l’ARNm BNT162b2. Nat Med, 27(8), 1379-1384. est ce que je:10.1038/s41591-021-01413-7. https://www.ncbi.nlm.nih.gov/pubmed/34127854
Kwan, MYW, Chua, GT, Chow, CB, Tsao, SSL, To, KKW, Yuen, KY, . . . IP, P. (2021). Vaccin à ARNm COVID et myocardite chez les adolescents. Hong Kong Med J, 27(5), 326-327. est ce que je:10.12809/hkmj215120. https://www.ncbi.nlm.nih.gov/pubmed/34393110
Lee, EJ, Cines, DB, Gernsheimer, T., Kessler, C., Michel, M., Tarantino, MD, . . . Bussel, JB (2021). Thrombocytopénie suite à la vaccination Pfizer et Moderna contre le SRAS-CoV-2. Am J Hematol, 96(5), 534-537. est ce que je:10.1002/ajh.26132. https://www.ncbi.nlm.nih.gov/pubmed/33606296
Lee, E., Chew, NWS, Ng, P. et Yeo, TJ (2021). Répondez à « Lettre à l’éditeur : La myocardite doit être envisagée chez les personnes présentant une augmentation de la troponine et des artères coronaires dégagées après la vaccination PfizerBioNTech contre le COVID-19 ». QJM. est ce que je:10.1093/qjmed/hcab232. https://www.ncbi.nlm.nih.gov/pubmed/34463770
Thrombocytopénie immunitaire thrombotique (VITT) létale induite par le vaccin suite à l’annonce 26.COV2.S : premier cas documenté en dehors des États-Unis : https://pubmed.ncbi.nlm.nih.gov/34626338/
Vascularite leucocytoclasique comme manifestation cutanée du vaccin contre le virus corona ChAdOx1 nCoV-19 (recombinant) : https://pubmed.ncbi.nlm.nih.gov/34546608/
Levin, D., Shimon, G., Fadlon-Derai, M., Gershovitz, L., Shovali, A., Sebbag, A., . . . Gordon, B. (2021). Myocardite suite à la vaccination contre le COVID-19 – Une série de cas. Vaccin, 39(42), 6195-6200. est ce que je:10.1016/j.vaccine.2021.09.004. https://www.ncbi.nlm.nih.gov/pubmed/34535317
Li, J., Hui, A., Zhang, X., Yang, Y., Tang, R., Ye, H., . . . Zhu, F. (2021). Sécurité et immunogénicité du vaccin à ARNm du SRAS-CoV-2 BNT162b1 chez les adultes chinois plus jeunes et plus âgés : une étude de phase 1 randomisée, contrôlée par placebo et en double aveugle. Nat Med, 27(6), 1062-1070. est ce que je:10.1038/s41591-021-01330-9. https://www.ncbi.nlm.nih.gov/pubmed/33888900
Li, M., Yuan, J., Lv, G., Brown, J., Jiang, X. et Lu, ZK (2021). Myocardite et péricardite après la vaccination contre le COVID-19 : inégalités d’âge et de types de vaccins. J Pers Med, 11(11). est ce que je:10.3390/jpm11111106. https://www.ncbi.nlm.nih.gov/pubmed/34834458
Lim, Y., Kim, MC, Kim, KH, Jeong, IS, Cho, YS, Choi, YD et Lee, JE (2021). Rapport de cas : myocardite fulminante aiguë et choc cardiogénique après la vaccination contre la maladie à coronavirus à ARN messager 2019 nécessitant une réanimation cardiopulmonaire extracorporelle. Avant Cardiovasc Med, 8, 758996. est ce que je:10.3389/fcvm.2021.758996. https://www.ncbi.nlm.nih.gov/pubmed/34778411
Ischémie des membres et thrombose de l’artère pulmonaire après le vaccin ChAdOx1 nCoV-19 (Oxford-AstraZeneca) : un cas de thrombocytopénie thrombotique immunitaire induite par le vaccin : https://pubmed.ncbi.nlm.nih.gov/33990339/
Hémorragie lobaire avec rupture ventriculaire peu de temps après la première dose d’un vaccin SARS-CoV-2 à base d’ARNm contre le SRAS-CoV-2 : https://pubmed.ncbi.nlm.nih.gov/34729467/
Longue, SS (2021). Informations importantes sur la myopéricardite après la vaccination Pfizer à ARNm COVID-19 chez les adolescents. J Pediatr, 238, 5. est ce que je:10.1016/j.jpeds.2021.07.057. https://www.ncbi.nlm.nih.gov/pubmed/34332972
Luk, A., Clarke, B., Dahdah, N., Ducharme, A., Krahn, A., McCrindle, B., . . . McDonald, M. (2021). Myocardite et péricardite après la vaccination par ARNm contre le COVID-19 : considérations pratiques pour les prestataires de soins. Can J Cardiol, 37(10), 1629-1634. est ce que je:10.1016/j.cjca.2021.08.001. https://www.ncbi.nlm.nih.gov/pubmed/34375696
Lymphadénopathie associée à la vaccination contre le COVID-19 sur TEP/TDM au FDG : caractéristiques distinctives du vaccin à vecteur adénovirus : https://pubmed.ncbi.nlm.nih.gov/34115709/
Madelon, N., Lauper, K., Breville, G., Sabater Royo, I., Goldstein, R., Andrey, DO, . . . Eberhardt, CS (2021). Réponses robustes des lymphocytes T chez les patients traités par anti-CD20 après la vaccination contre le COVID-19 : une étude de cohorte prospective. Clin Infect Dis. est ce que je:10.1093/cid/ciab954. https://www.ncbi.nlm.nih.gov/pubmed/34791081
Infarctus cérébral malin après vaccination avec ChAdOx1 nCov-19 : une variante catastrophique de la thrombopénie thrombotique à médiation immunitaire induite par le vaccin : https://pubmed.ncbi.nlm.nih.gov/34341358/
Prise en charge d’un patient présentant un syndrome rare de malformation congénitale des membres après une thrombose et une thrombocytopénie induites par le vaccin SRAS-CoV-2 (VITT) : https://pubmed.ncbi.nlm.nih.gov/34097311/
Prise en charge de la thrombose veineuse cérébrale et splanchnique associée à une thrombocytopénie chez les sujets préalablement vaccinés avec Vaxzevria (AstraZeneca) : prise de position de la Société italienne pour l’étude de l’hémostase et de la thrombose (SISET) : https://pubmed.ncbi.nlm.nih.gov /33871350/
Mangat, C. et Milosavljevic, N. (2021). La vaccination BNT162b2 pendant la grossesse protège à la fois la mère et le nourrisson : anticorps anti-SARS-CoV-2 S constamment positifs chez un nourrisson à l’âge de 6 mois. Case Rep Pediatr, 2021, 6901131. est ce que je:10.1155/2021/6901131. https://www.ncbi.nlm.nih.gov/pubmed/34676123
Mark, C., Gupta, S., Punnett, A., Upton, J., Orkin, J., Atkinson, A., . . . Alexandre, S. (2021). Sécurité de l’administration du vaccin COVID-19 à ARNm BNT162b2 (Pfizer-BioNTech) chez les jeunes et les jeunes adultes ayant des antécédents de leucémie lymphoblastique aiguë et d’allergie au PEG-asparaginase. Cancer du sang pédiatrique, 68(11), e29295. est ce que je:10.1002/pbc.29295. https://www.ncbi.nlm.nih.gov/pubmed/34398511
Martins-Filho, PR, Quintans-Junior, LJ, de Souza Araujo, AA, Marié, KB, Souza Tavares, CS, Gurgel, RQ, . . . Santos, VS (2021). Inégalités socio-économiques, incidence et mortalité du COVID-19 chez les enfants brésiliens : une étude nationale basée sur un registre. Santé publique, 190, 4-6. est ce que je:10.1016/j.puhe.2020.11.005. https://www.ncbi.nlm.nih.gov/pubmed/33316478
Thrombose veineuse cérébrale massive et infarctus du bassin veineux comme complications tardives du COVID-19 : à propos d’un cas : https://pubmed.ncbi.nlm.nih.gov/34373991/
McLean, K. et Johnson, TJ (2021). Myopéricardite chez un adolescent auparavant en bonne santé après une vaccination contre le COVID-19 : un rapport de cas. Acad Emerg Med, 28(8), 918-921. est ce que je:10.1111/acem.14322. https://www.ncbi.nlm.nih.gov/pubmed/34133825
Mevorach, D., Anis, E., Cedar, N., Bromberg, M., Haas, EJ, Nadir, E., . . . Alroy-Preis, S. (2021). Myocardite après le vaccin à ARNm BNT162b2 contre le Covid-19 en Israël. N Engl J Med, 385(23), 2140-2149. est ce que je:10.1056/NEJMoa2109730. https://www.ncbi.nlm.nih.gov/pubmed/34614328
Le syndrome de Miller-Fisher et le syndrome de Guillain-Barré se chevauchent chez un patient après la vaccination Oxford-AstraZeneca contre le SRAS-CoV-2 : https://pubmed.ncbi.nlm.nih.gov/34848426/
Maladie à changement minime avec lésion rénale aiguë sévère après le vaccin Oxford-AstraZeneca COVID-19 : rapport de cas : https://pubmed.ncbi.nlm.nih.gov/34242687/
Minocha, PK, Better, D., Singh, RK et Hoque, T. (2021). Récidive de la myocardite aiguë temporairement associée à la réception du vaccin à ARNm contre la maladie à coronavirus 2019 (COVID-19) chez un adolescent de sexe masculin. J Pediatr, 238, 321-323. est ce que je:10.1016/j.jpeds.2021.06.035. https://www.ncbi.nlm.nih.gov/pubmed/34166671
Mizrahi, B., Lotan, R., Kalkstein, N., Peretz, A., Perez, G., Ben-Tov, A., . . . Patalon, T. (2021). Corrélation des infections révolutionnaires par le SRAS-CoV-2 avec le délai écoulé depuis le vaccin. Nat Commun, 12(1), 6379. est ce que je:10.1038/s41467-021-26672-3. https://www.ncbi.nlm.nih.gov/pubmed/34737312
Moffitt, K., Cheung, E., Yeung, T., Stamoulis, C. et Malley, R. (2021). Analyse du transcriptome de Staphylococcus aureus dans les abcès des tissus mous pédiatriques et comparaison avec les infections murines. Infect Immun, 89 (4). est ce que je:10.1128/IAI.00715-20. https://www.ncbi.nlm.nih.gov/pubmed/33526560
Mohamed, L., Madsen, AMR, Schaltz-Buchholzer, F., Ostenfeld, A., Netea, MG, Benn, CS et Kofoed, PE (2021). Réactivation des cicatrices de la vaccination BCG après vaccination avec des vaccins à ARNm-Covid : deux rapports de cas. BMC Infect Dis, 21(1), 1264. est ce que je:10.1186/s12879-021-06949-0. https://www.ncbi.nlm.nih.gov/pubmed/34930152
Montgomery, J., Ryan, M., Engler, R., Hoffman, D., McClenathan, B., Collins, L., . . . Cooper, LT, Jr. (2021). Myocardite suite à l’immunisation avec les vaccins à ARNm COVID-19 chez les membres de l’armée américaine. JAMA Cardiol, 6(10), 1202-1206. est ce que je:10.1001/jamacardio.2021.2833. https://www.ncbi.nlm.nih.gov/pubmed/34185045
Les vaccins Mrna COVID augmentent considérablement les marqueurs inflammatoires endothéliaux et le risque de syndrome coronarien aigu tel que mesuré par les tests cardiaques PULS : une mise en garde : https://www.ahajournals.org/doi/10.1161/circ.144.suppl_1.10712
Les lymphocytes T induits par le vaccin à ARNm répondent de manière identique aux variantes inquiétantes du SRAS-CoV-2, mais diffèrent en termes de longévité et de propriétés de référencement en fonction du statut d’infection antérieur https://www.biorxiv.org/content/10.1101/2021.05.12.443888v2
Imagerie multimodale et histopathologie chez un jeune homme présentant une myocardite lymphocytaire fulminante et un choc cardiogénique après vaccination avec l’ARNm-1273 : https://pubmed.ncbi.nlm.nih.gov/34848416/
Plusieurs sites de thrombose artérielle chez un patient de 35 ans après vaccination par ChAdOx1 (AstraZeneca), ayant nécessité une thrombectomie chirurgicale fémorale et carotidienne en urgence : https://pubmed.ncbi.nlm.nih.gov/34644642/
Murakami, Y., Shinohara, M., Oka, Y., Wada, R., Noike, R., Ohara, H., . . . Ikeda, T. (2021). Myocardite suite à une vaccination à ARN messager contre le COVID-19 : une série de cas japonais. Interne Med. est ce que je:10.2169/internalmedicine.8731-21. https://www.ncbi.nlm.nih.gov/pubmed/34840235
Infarctus du myocarde, accident vasculaire cérébral et embolie pulmonaire après le vaccin à ARNm BNT162b2 contre la COVID-19 chez les personnes âgées de 75 ans ou plus : https://pubmed.ncbi.nlm.nih.gov/34807248/
Myocardite après vaccination avec les vaccins à ARNm COVID-19 chez les membres de l’armée américaine. Cet article rapporte que chez « 23 patients de sexe masculin, dont 22 militaires auparavant en bonne santé, une myocardite a été identifiée dans les 4 jours suivant la réception du vaccin » : https://jamanetwork.com/journals/jamacardiology/fullarticle/2781601 .
Myocardite et péricardite chez les adolescents après la première et la deuxième doses de vaccins à ARNm contre la COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34849667/
Myocardite associée à la vaccination contre le COVID-19 : résultats échocardiographiques, tomodensitométriques cardiaques et IRM :. https://pubmed.ncbi.nlm.nih.gov/34428917/
Résultats de myocardite sur l’imagerie par résonance magnétique cardiaque après vaccination avec l’ARNm du COVID-19 chez les adolescents :. https://pubmed.ncbi.nlm.nih.gov/34704459/
Mort subite induite par la myocardite après vaccination par l’ARNm BNT162b2 COVID-19 en Corée : rapport de cas axé sur les résultats histopathologiques : https://pubmed.ncbi.nlm.nih.gov/34664804/
Myopéricardite après le vaccin contre le coronavirus à acide ribonucléique messager Pfizer contre la maladie à coronavirus chez les adolescents : https://pubmed.ncbi.nlm.nih.gov/34228985/
Nagasaka, T., Koitabashi, N., Ishibashi, Y., Aihara, K., Takama, N., Ohyama, Y., . . . Kaneko, Y. (2021). Myocardite aiguë associée à la vaccination contre le COVID-19 : un rapport de cas. Cas J Cardiol. est ce que je:10.1016/j.jccase.2021.11.006. https://www.ncbi.nlm.nih.gov/pubmed/34876937
Événements indésirables nerveux et musculaires après la vaccination contre le COVID-19 : une revue systématique et une méta-analyse des essais cliniques : https://pubmed.ncbi.nlm.nih.gov/34452064/
Neuromyélite optique chez une femme en bonne santé après vaccination contre l’ARNm-1273 du coronavirus 2 du syndrome respiratoire aigu sévère : https://pubmed.ncbi.nlm.nih.gov/34660149/
Considérations neurochirurgicales concernant la craniectomie décompressive pour hémorragie intracérébrale après vaccination contre le SRAS-CoV-2 dans la thrombopénie thrombotique thrombotique-VITT induite par le vaccin : https://pubmed.ncbi.nlm.nih.gov/34202817/
Considérations neurochirurgicales concernant la craniectomie décompressive pour hémorragie intracérébrale après vaccination contre le SRAS-CoV-2 dans la thrombopénie thrombotique thrombotique-VITT induite par le vaccin : https://pubmed.ncbi.nlm.nih.gov/34202817/
Syndrome néphrotique d’apparition récente après vaccination de Janssen contre le COVID-19 : rapport de cas et revue de la littérature : https://pubmed.ncbi.nlm.nih.gov/34342187/
Thrombocytopénie immunitaire nouvellement diagnostiquée chez une patiente enceinte après la vaccination contre la maladie à coronavirus 2019 : https://pubmed.ncbi.nlm.nih.gov/34420249/
Ntouros, PA, Vlachogiannis, NI, Pappa, M., Nezos, A., Mavragani, CP, Tektonidou, MG, . . . Sfikakis, PP (2021). Réponse efficace aux dommages à l’ADN après une provocation immunitaire aiguë mais non chronique : vaccin contre le SRAS-CoV-2 contre le lupus érythémateux systémique. Clin Immunol, 229, 108765. est ce que je:10.1016/j.clim.2021.108765. https://www.ncbi.nlm.nih.gov/pubmed/34089859
Nygaard, U., Holm, M., Bohnstedt, C., Chai, Q., Schmidt, LS, Hartling, UB, . . . Stensballe, LG (2022). Incidence de la myopéricardite dans la population après la vaccination contre le COVID-19 chez les adolescents danois. Pediatr Infect Dis J, 41(1), e25-e28. est ce que je:10.1097/INF.0000000000003389. https://www.ncbi.nlm.nih.gov/pubmed/34889875
Oberhardt, V., Luxenburger, H., Kemming, J., Schulien, I., Ciminski, K., Giese, S., . . . Hofmann, M. (2021). Mobilisation rapide et stable des lymphocytes T CD8(+) par le vaccin à ARNm du SRAS-CoV-2. Nature, 597(7875), 268-273. est ce que je:10.1038/s41586-021-03841-4. https://www.ncbi.nlm.nih.gov/pubmed/34320609
Apparition d’une myocardite aiguë de type infarctus après la vaccination contre le COVID-19 : juste une coïncidence accidentelle ou plutôt une myocardite auto-immune associée à la vaccination ? : https://pubmed.ncbi.nlm.nih.gov/34333695/
Apparition d’une myocardite aiguë de type infarctus après vaccination contre le COVID-19 : juste une coïncidence accidentelle ou plutôt une myocardite auto-immune associée à la vaccination ? : https://pubmed.ncbi.nlm.nih.gov/34333695/
Un an après un cas bénin de COVID-19 : la plupart des patients conservent une immunité spécifique, mais un patient sur quatre souffre encore de symptômes à long terme https://pubmed.ncbi.nlm.nih.gov/34362088/
Apparition/épidémie de psoriasis après le vaccin contre le virus Corona ChAdOx1 nCoV-19 (Oxford-AstraZeneca/Covishield) : rapport de deux cas : https://pubmed.ncbi.nlm.nih.gov/34350668/
La vaccination Oxford-AstraZeneca COVID-19 a induit une lymphadénopathie sur la TEP/CT à la choline [18F], pas seulement sur un résultat au FDG : https://pubmed.ncbi.nlm.nih.gov/33661328/
Park, H., Yun, KW, Kim, KR, Song, SH, Ahn, B., Kim, DR, . . . Kim, YJ (2021). Épidémiologie et caractéristiques cliniques de la myocardite/péricardite avant l’introduction du vaccin à ARNm COVID-19 chez les enfants coréens : une étude multicentrique. J coréen Med Sci, 36(32), e232. est ce que je:10.3346/jkms.2021.36.e232. https://www.ncbi.nlm.nih.gov/pubmed/34402230
Park, J., Brekke, DR et Bratincsak, A. (2021). Myocardite auto-limitée se manifestant par des douleurs thoraciques et une élévation du segment ST chez les adolescents après vaccination avec le vaccin à ARNm BNT162b2. Cardiol jeune, 1-4. est ce que je:10.1017/S1047951121002547. https://www.ncbi.nlm.nih.gov/pubmed/34180390
Syndrome de Parsonage-Turner associé à la vaccination contre le SRAS-CoV-2 ou le SRAS-CoV-2. Commentaire sur : « Amyotrophie névralgique et infection au COVID-19 : 2 cas de paralysie accessoire du nerf spinal » par Coll et al. Colonne articulaire 2021 ; 88 : 10519 : https://pubmed.ncbi.nlm.nih.gov/34139321/
Patel, YR, Louis, DW, Atalay, M., Agarwal, S. et Shah, NR (2021). Résultats de résonance magnétique cardiovasculaire chez de jeunes patients adultes atteints de myocardite aiguë après une vaccination à ARNm contre le COVID-19 : une série de cas. J Cardiovasc Magn Reson, 23(1), 101. est ce que je:10.1186/s12968-021-00795-4. https://www.ncbi.nlm.nih.gov/pubmed/34496880
Anticorps pathologiques contre le facteur plaquettaire 4 après vaccination avec ChAdOx1 nCoV-19. Cet article précise : « En l’absence de pathologies prothrombotiques antérieures, 22 patients présentaient une thrombocytopénie aiguë et une thrombose, principalement une thrombose veineuse cérébrale, et 1 patient présentait une thrombocytopénie isolée et un phénotype hémorragique » : https://www.nejm.org/doi /full/10.1056/NEJMoa2105385?query=TOC&fbclid=IwA R2ifm2TQjetAMb42YRRUlKEeqCQe-lDasIWvjMgzHHaItbuPbu6n7NlG3cic.
Patone, M., Mei, XW, Handunnetthi, L., Dixon, S., Zaccardi, F., Shankar-Hari, M., . . . Hippisley-Cox, J. (2021). Risques de myocardite, de péricardite et d’arythmies cardiaques associés à la vaccination contre le COVID-19 ou à l’infection par le SRAS-CoV-2. Nat Med. est ce que je:10.1038/s41591-021-01630-0. https://www.ncbi.nlm.nih.gov/pubmed/34907393
Patrignani, A., Schicchi, N., Calcagnoli, F., Falchetti, E., Ciampani, N., Argalia, G. et Mariani, A. (2021). Myocardite aiguë suite à la vaccination Comirnaty chez un homme en bonne santé ayant déjà été infecté par le SRAS-CoV-2. Représentant de l’affaire Radiol, 16(11), 3321-3325. est ce que je:10.1016/j.radcr.2021.07.082. https://www.ncbi.nlm.nih.gov/pubmed/34367386
Saignement caverneux pédonculaire et symptomatique après vaccination contre le SRAS-CoV-2 induite par une thrombocytopénie immunitaire : https://pubmed.ncbi.nlm.nih.gov/34549178/
Perez, Y., Levy, ER, Joshi, AY, Virk, A., Rodriguez-Porcel, M., Johnson, M., . . . Swift, MD (2021). Myocardite suite au vaccin à ARNm COVID-19 : une série de cas et détermination du taux d’incidence. Clin Infect Dis. est ce que je:10.1093/cid/ciab926. https://www.ncbi.nlm.nih.gov/pubmed/34734240
Perrotta, A., Biondi-Zoccai, G., Saade, W., Miraldi, F., Morelli, A., Marullo, AG, . . . Peruzzi, M. (2021). Une enquête mondiale instantanée sur les effets secondaires des vaccins contre la COVID-19 auprès des professionnels de la santé et des forces armées, en mettant l’accent sur les maux de tête. Panminerva Med, 63(3), 324-331. est ce que je:10.23736/S0031-0808.21.04435-9. https://www.ncbi.nlm.nih.gov/pubmed/34738774
Perrotta, A., Biondi-Zoccai, G., Saade, W., Miraldi, F., Morelli, A., Marullo, AG, . . . Peruzzi, M. (2021). Une enquête mondiale instantanée sur les effets secondaires des vaccins contre la COVID-19 auprès des professionnels de la santé et des forces armées, en mettant l’accent sur les maux de tête. Panminerva Med, 63(3), 324-331. est ce que je:10.23736/S0031-0808.21.04435-9. https://www.ncbi.nlm.nih.gov/pubmed/34738774
Pinana, JL, Lopez-Corral, L., Martino, R., Montoro, J., Vazquez, L., Perez, A., . . . Thérapie cellulaire, G. (2022). Détection des anticorps réactifs au SRAS-CoV-2 après la vaccination contre le SRAS-CoV-2 chez les receveurs de greffe de cellules souches hématopoïétiques : enquête prospective du groupe espagnol de transplantation de cellules souches hématopoïétiques et de thérapie cellulaire. Am J Hematol, 97(1), 30-42. est ce que je:10.1002 / ajh.26385. https://www.ncbi.nlm.nih.gov/pubmed/34695229
Activation et modulation des plaquettes dans la thrombose avec syndrome de thrombopénie associée au vaccin ChAdO × 1 nCov-19 : https://pubmed.ncbi.nlm.nih.gov/34474550/
Allergie au polyéthylène glycole chez le receveur du vaccin SRAS-CoV2 : rapport de cas d’un jeune adulte receveur et gestion de l’exposition future au SRAS-CoV2 : https://pubmed.ncbi.nlm.nih.gov/33919151/
Thrombose de la veine porte due à une thrombocytopénie immunitaire thrombotique (VITT) induite par le vaccin après la vaccination Covid avec ChAdOx1 nCoV-19 : https://pubmed.ncbi.nlm.nih.gov/34598301/
Syndrome inflammatoire multisystémique post-vaccination chez les adultes sans signe d’infection préalable par le SRAS-CoV-2 : https://pubmed.ncbi.nlm.nih.gov/34852213/
Risque potentiel d’événements thrombotiques après la vaccination contre le COVID-19 avec Oxford-AstraZeneca chez les femmes recevant des œstrogènes : https://pubmed.ncbi.nlm.nih.gov/34734086/
Prédicteurs de mortalité dans la thrombocytopénie thrombotique après vaccination adénovirale contre le COVID-19 : le score FAPIC : https://pubmed.ncbi.nlm.nih.gov/34545400/
Prévalence des événements indésirables graves chez les professionnels de santé après avoir reçu la première dose du vaccin contre le coronavirus ChAdOx1 nCoV-19 (Covishield) au Togo, mars 2021 : https://pubmed.ncbi.nlm.nih.gov/34819146/
Prévalence de la thrombocytopénie, des anticorps anti-facteur plaquettaire 4 et des D-dimères élevés chez les Thaïlandais après vaccination avec ChAdOx1 nCoV-19 : https://pubmed.ncbi.nlm.nih.gov/34568726/
Prévalence de la thrombocytopénie, des anticorps anti-facteur 4 et des D-dimères élevés chez les Thaïlandais après vaccination avec ChAdOx1 nCoV-19 : https://pubmed.ncbi.nlm.nih.gov/34568726/
Insuffisance surrénalienne primaire associée à la thrombocytopénie thrombotique immunitaire induite par le vaccin Oxford-AstraZeneca ChAdOx1 nCoV-19 (VITT) : https://pubmed.ncbi.nlm.nih.gov/34256983/
Insuffisance surrénalienne primaire associée à une thrombocytopénie immunitaire thrombotique induite par le vaccin Oxford-AstraZeneca ChAdOx1 nCoV-19 (VITT) : https://pubmed.ncbi.nlm.nih.gov/34256983/
Plaquettes procoagulantes médiées par des anticorps procoagulants dans la thrombocytopénie thrombotique immunitaire associée à la vaccination contre le SRAS-CoV-2 : https://pubmed.ncbi.nlm.nih.gov/34011137/
Microparticules procoagulantes : un lien possible entre la thrombocytopénie immunitaire induite par le vaccin (VITT) et la thrombose veineuse des sinus cérébraux : https://pubmed.ncbi.nlm.nih.gov/34129181/
Vascularite associée aux anticorps cytoplasmiques anti-neutrophiles induite par le propylthiouracile après une vaccination contre le COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34451967/
Vascularite associée aux anticorps anti-cytoplasmiques neutrophiles induite par le propylthiouracile après la vaccination contre le COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34451967/
Réactions pseudo-anaphylactiques au vaccin Pfizer BNT162b2 : à propos de 3 cas d’anaphylaxie suite à une vaccination avec Pfizer BNT162b2 : https://pubmed.ncbi.nlm.nih.gov/34579211/
Cas rare de lymphadénopathie supraclaviculaire controlatérale après vaccination contre le COVID-19 : résultats de tomodensitométrie et d’échographie : https://pubmed.ncbi.nlm.nih.gov/34667486/
Réactivation de la maladie de Vogt-Koyanagi-Harada sous contrôle depuis plus de 6 ans, après vaccination anti-SARS-CoV-2 : https://pubmed.ncbi.nlm.nih.gov/34224024/
Récidive de myocardite aiguë temporairement associée à la réception du vaccin contre la maladie à ARNm du coronavirus 2019 (COVID-19) chez un adolescent de sexe masculin : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216855/
Récidive de myocardite aiguë temporairement associée à la réception du vaccin contre la maladie à ARNm du coronavirus 2019 (COVID-19) chez un adolescent de sexe masculin : https://pubmed.ncbi.nlm.nih.gov/34166671/
Vascularite récurrente associée aux ANCA après la vaccination Oxford AstraZeneca ChAdOx1-S COVID-19 : une série de cas de deux patients : https://pubmed.ncbi.nlm.nih.gov/34755433/
Zona récurrente après vaccination contre le COVID-19 chez des patients atteints d’urticaire chronique sous traitement à la cyclosporine – À propos de 3 cas : https://pubmed.ncbi.nlm.nih.gov/34510694/
Thrombocytopénie thrombotique immunitaire induite par le vaccin (VITT) réfractaire traitée par échange plasmatique thérapeutique retardé (TPE) : https://pubmed.ncbi.nlm.nih.gov/34672380/
Lymphadénopathie régionale après vaccination contre le COVID-19 : revue de la littérature et considérations pour la prise en charge des patientes dans les soins du cancer du sein : https://pubmed.ncbi.nlm.nih.gov/34731748/
Taux de réinfection parmi les patients ayant déjà été testés positifs pour le COVID-19 : une étude de cohorte rétrospective https://pubmed.ncbi.nlm.nih.gov/33718968/
Relation entre les allergies préexistantes et les réactions anaphylactiques suite à l’administration du vaccin à ARNm COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34215453/
Thrombose veineuse rénale et embolie pulmonaire secondaires à une thrombocytopénie immunitaire thrombotique induite par le vaccin (VITT) : https://pubmed.ncbi.nlm.nih.gov/34268278/
Rapport du Consortium international sur la thrombose veineuse cérébrale sur la thrombose veineuse cérébrale après la vaccination contre le SRAS-CoV-2 : https://pubmed.ncbi.nlm.nih.gov/34462996/
Déclaration des neuropathies inflammatoires aiguës avec les vaccins COVID-19 : analyse de disproportionnalité des sous-groupes dans VigiBase : https://pubmed.ncbi.nlm.nih.gov/34579259/
Rapports d’anaphylaxie après avoir reçu des vaccins à ARNm contre la COVID-19 aux États-Unis, du 14 décembre 2020 au 18 janvier 2021 : https://pubmed.ncbi.nlm.nih.gov/33576785/
rapports d’anaphylaxie après avoir reçu des vaccins à ARNm contre la COVID-19 aux États-Unis, du 14 décembre 2020 au 18 janvier 2021 : https://pubmed.ncbi.nlm.nih.gov/33576785/
Revon-Rivière, G., Ninove, L., Min, V., Rome, A., Coze, C., Verschuur, A., . . . André, N. (2021). Le vaccin à ARNm BNT162b2 contre la COVID-19 chez les adolescents et jeunes adultes atteints de cancer : une expérience monocentrique. Eur J Cancer, 154, 30-34. est ce que je:10.1016/j.ejca.2021.06.002. https://www.ncbi.nlm.nih.gov/pubmed/34233234
Risque de réactions allergiques sévères aux vaccins COVID-19 chez les patients atteints de dermatose allergique : recommandations pratiques. Une déclaration de position de l’ETFAD avec des experts externes : https://pubmed.ncbi.nlm.nih.gov/33752263/
Risque de thrombocytopénie et de thromboembolie après vaccination contre le covid-19 et tests SARS-CoV-2 positifs : étude de série de cas autocontrôlée : https://pubmed.ncbi.nlm.nih.gov/34446426/
Rapports de cas S. de thrombose du sinus veineux cérébral avec thrombocytopénie après vaccination avec Ad26.COV2.S, 2 mars-21 avril 2021 : https://pubmed.ncbi.nlm.nih.gov/33929487/
Sanchez Tijmes, F., Thavendiranathan, P., Udell, JA, Seidman, MA et Hanneman, K. (2021). Évaluation par IRM cardiaque de l’inflammation myocardique non ischémique : examen de l’état de l’art et mise à jour sur la myocardite associée à la vaccination contre le COVID-19. Imagerie cardiothoracique Radiol, 3 (6), e210252. est ce que je:10.1148/ryct.210252. https://www.ncbi.nlm.nih.gov/pubmed/34934954
Les lymphocytes T spécifiques du SRAS-CoV-2 induits par le vaccin à ARNm reconnaissent les variantes B.1.1.7 et B.1.351, mais diffèrent en termes de longévité et de propriétés de référencement en fonction du statut d’infection antérieur https://www.biorxiv.org/content/10.1101/2021.05 .12.443888v1
Les vaccins contre le SRAS-CoV-2 peuvent être compliqués non seulement par le syndrome de Guillain-Barré mais aussi par une neuropathie distale des petites fibres : https://pubmed.ncbi.nlm.nih.gov/34525410/
Schauer, J., Buddhe, S., Colyer, J., Sagiv, E., Law, Y., Mallenahalli Chikkabyrappa, S. et Portman, MA (2021). Myopéricardite après le vaccin Pfizer Messenger contre la maladie à coronavirus à base d’acide ribonucléique chez les adolescents. J Pediatr, 238, 317-320. est ce que je:10.1016/j.jpeds.2021.06.083. https://www.ncbi.nlm.nih.gov/pubmed/34228985
Schneider, J., Sottmann, L., Greinacher, A., Hagen, M., Kasper, HU, Kuhnen, C., . . . En ligneSchmeling, A. (2021). Enquête post-mortem sur les décès consécutifs à la vaccination avec les vaccins COVID-19. Int J Legal Med, 135(6), 2335-2345. est ce que je:10.1007/s00414-021-02706-9. https://www.ncbi.nlm.nih.gov/pubmed/34591186
Schramm, R., Costard-Jackle, A., Rivinius, R., Fischer, B., Muller, B., Boeken, U., . . . Gummert, J. (2021). Mauvaise réponse humorale et des lymphocytes T à deux doses du vaccin à ARN messager du SRAS-CoV-2 BNT162b2 chez les receveurs de transplantation cardiothoracique. Clin Res Cardiol, 110(8), 1142-1149. est ce que je:10.1007/s00392-021-01880-5. https://www.ncbi.nlm.nih.gov/pubmed/34241676
Thrombocytopénie secondaire après vaccination contre le SRAS-CoV-2 : à propos d’un cas d’hémorragie et d’hématome après une chirurgie buccale mineure : https://pubmed.ncbi.nlm.nih.gov/34314875/
Thrombocytopénie secondaire après vaccination contre le SRAS-CoV-2 : à propos d’un cas d’hémorragie et d’hématome après une chirurgie buccale mineure : https://pubmed.ncbi.nlm.nih.gov/34314875/
Myocardite auto-limitée se manifestant par des douleurs thoraciques et une élévation du segment ST chez les adolescents après vaccination avec le vaccin à ARNm BNT162b2 : https://pubmed.ncbi.nlm.nih.gov/34180390/
Myocardite auto-limitée se manifestant par des douleurs thoraciques et une élévation du segment ST chez les adolescents après vaccination avec le vaccin à ARNm BNT162b2 : https://pubmed.ncbi.nlm.nih.gov/34180390/
Sessa, F., Salerno, M., Esposito, M., Di Nunno, N., Zamboni, P. et Pomara, C. (2021). Résultats de l’autopsie et relation de causalité entre le décès et la vaccination contre le COVID-19 : une revue systématique. J Clin Med, 10(24). est ce que je:10.3390/jcm10245876. https://www.ncbi.nlm.nih.gov/pubmed/34945172
Réactions allergiques sévères après la vaccination contre le COVID-19 avec le vaccin Pfizer/BioNTech en Grande-Bretagne et aux États-Unis : prise de position des sociétés allemandes d’allergie : Association médicale allemande des allergologues (AeDA), Société allemande d’allergologie et d’immunologie clinique (DGAKI) et Société pour l’allergologie pédiatrique et la médecine environnementale (GPA) : https://pubmed.ncbi.nlm.nih.gov/33643776/
Thrombocytopénie immunitaire sévère après vaccination contre le COVID-19 : à propos de quatre cas et revue de la littérature : https://pubmed.ncbi.nlm.nih.gov/34653943/
Thrombocytopénie thrombotique sévère induite par le vaccin après une vaccination contre le COVID-19 : rapport de cas d’autopsie et revue de la littérature : https://pubmed.ncbi.nlm.nih.gov/34355379/
Sharif, N., Alzahrani, KJ, Ahmed, SN et Dey, SK (2021). Efficacité, immunogénicité et sécurité des vaccins COVID-19 : une revue systématique et une méta-analyse. Front Immunol, 12, 714170. est ce que je:10.3389/fimmu.2021.714170. https://www.ncbi.nlm.nih.gov/pubmed/34707602
Shay, DK, Gee, J., Su, JR, Myers, TR, Marquez, P., Liu, R., . . . Shimabukuro, TT (2021). Surveillance de la sécurité du vaccin Janssen (Johnson & Johnson) contre la COVID-19 – États-Unis, mars-avril 2021. MMWR Morb Mortal Wkly Rep, 70(18), 680-684. est ce que je:10.15585/mmwr.mm7018e2. https://www.ncbi.nlm.nih.gov/pubmed/33956784
Shazley, O. et Alshazley, M. (2021). Un homme de 52 ans positif au COVID a présenté une thromboembolie veineuse et une coagulation intravasculaire disséminée après la vaccination Johnson & Johnson : une étude de cas. Cureus, 13(7), e16383. est ce que je:10.7759/cureus.16383. https://www.ncbi.nlm.nih.gov/pubmed/34408937
Faire la lumière sur la myocardite et la péricardite post-vaccination chez les vaccinés contre la COVID-19 et non contre la COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34696294/
Shiyovich, A., Witberg, G., Aviv, Y., Eisen, A., Orvin, K., Wiessman, M., . . . Hamdan, A. (2021). Myocardite suite à la vaccination contre le COVID-19 : étude d’imagerie par résonance magnétique. Imagerie cardiovasculaire Eur Heart J. est ce que je:10.1093/ehjci/jeab230. https://www.ncbi.nlm.nih.gov/pubmed/34739045
Simone, A., Herald, J., Chen, A., Gulati, N., Shen, AY, Lewin, B. et Lee, MS (2021). Myocardite aiguë après la vaccination par ARNm contre le COVID-19 chez les adultes âgés de 18 ans ou plus. JAMA Intern Med, 181(12), 1668-1670. est ce que je:10.1001/jamainternmed.2021.5511. https://www.ncbi.nlm.nih.gov/pubmed/34605853
Chanteur, ME, Taub, IB et Kaelber, DC (2021). Risque de myocardite due à l’infection au COVID-19 chez les personnes de moins de 20 ans : une analyse basée sur la population. medRxiv. est ce que je:10.1101/2021.07.23.21260998. https://www.ncbi.nlm.nih.gov/pubmed/34341797
Réactions cutanées signalées après la vaccination contre le COVID-19 de Moderna et Pfizer : une étude basée sur un registre de 414 cas : https://pubmed.ncbi.nlm.nih.gov/33838206/
Smith, C., Odd, D., Harwood, R., Ward, J., Linney, M., Clark, M., . . . Fraser, LK (2021). Décès d’enfants et de jeunes en Angleterre après une infection par le SRAS-CoV-2 au cours de la première année pandémique. Nat Med. est ce que je:10.1038/s41591-021-01578-1. https://www.ncbi.nlm.nih.gov/pubmed/34764489
Snapiri, O., Rosenberg Danziger, C., Shirman, N., Weissbach, A., Lowenthal, A., Ayalon, I., . . . Bilavsky, E. (2021). Lésions cardiaques transitoires chez les adolescents recevant le vaccin à ARNm BNT162b2 contre la COVID-19. Pediatr Infect Dis J, 40(10), e360-e363. est ce que je:10.1097/INF.0000000000003235. https://www.ncbi.nlm.nih.gov/pubmed/34077949
Spectre des résultats de la neuroimagerie dans la vaccination post-CoVID-19 : une série de cas et une revue de la littérature : https://pubmed.ncbi.nlm.nih.gov/34842783/
Spinner, JA, Julien, CL, Olayinka, L., Dreyer, WJ, Bocchini, CE, Munoz, FM et Devaraj, S. (2021). Anticorps anti-pic du SRAS-CoV-2 après vaccination dans le cadre d’une transplantation cardiaque pédiatrique : un premier rapport. J Transplantation coeur-poumon. est ce que je:10.1016/j.healun.2021.11.001. https://www.ncbi.nlm.nih.gov/pubmed/34911654
Syndrome de TIH spontané : arthroplastie du genou, infection et parallèles avec la thrombocytopénie thrombotique immunitaire induite par le vaccin : https://pubmed.ncbi.nlm.nih.gov/34144250/
Starekova, J., Bluemke, DA, Bradham, WS, Grist, TM, Schiebler, ML et Reeder, SB (2021). Myocardite associée à la vaccination à ARNm contre le COVID-19. Radiologie, 301(2), E409-E411. est ce que je:10.1148/radiol.2021211430. https://www.ncbi.nlm.nih.gov/pubmed/34282971
Lymphadénopathie axillaire subclinique associée à la vaccination contre le COVID-19 lors d’une mammographie de dépistage : https://pubmed.ncbi.nlm.nih.gov/34906409/
Sulemankhil, I., Abdelrahman, M. et Negi, SI (2021). Association temporelle entre le vaccin COVID-19 Ad26.COV2.S et la myocardite aiguë : un rapport de cas et une revue de la littérature. Cardiovasc Revasc Med. est ce que je:10.1016/j.carrev.2021.08.012. https://www.ncbi.nlm.nih.gov/pubmed/34420869
Lymphadénopathie supraclaviculaire après vaccination contre le COVID-19 : une présentation croissante dans la clinique d’attente de deux semaines pour les tumeurs du cou : https://pubmed.ncbi.nlm.nih.gov/33685772/
Réponses des lymphocytes T chez les personnes convalescentes atteintes de COVID-19 ciblées sur les épitopes conservés de plusieurs variantes circulantes importantes du SRAS-CoV-2 https://academic.oup.com/ofid/article/8/7/ofab143/6189113
Tailor, PD, Feighery, AM, El-Sabawi, B. et Prasad, A. (2021). Rapport de cas : myocardite aiguë après la deuxième dose du vaccin ARNm-1273 SARS-CoV-2. Représentant de l’affaire Eur Heart J, 5(8), ytab319. est ce que je:10.1093/ehjcr/ytab319. https://www.ncbi.nlm.nih.gov/pubmed/34514306
Takeda, M., Ishio, N., Shoji, T., Mori, N., Matsumoto, M. et Shikama, N. (2021). Myocardite à éosinophiles après la vaccination contre la maladie à coronavirus 2019 (COVID-19). Circ J. est ce que je:10.1253/circj.CJ-21-0935. https://www.ncbi.nlm.nih.gov/pubmed/34955479
Équipe, CC-R., Alimentation et drogue, A. (2021). Réactions allergiques, y compris l’anaphylaxie après réception de la première dose du vaccin Pfizer-BioNTech COVID-19 – États-Unis, 14-23 décembre 2020. MMWR Morb Mortal Wkly Rep, 70(2), 46-51. est ce que je:10.15585/mmwr.mm7002e1. https://www.ncbi.nlm.nih.gov/pubmed/33444297
La nouvelle plateforme vaccinale à ARNm contre la COVID-19 et la myocardite : des indices sur le mécanisme sous-jacent possible : https://pubmed.ncbi.nlm.nih.gov/34312010/
Les rôles des plaquettes dans la coagulopathie associée au COVID-19 et la thrombopénie thrombotique immuno-immune induite par le vaccin : https://pubmed.ncbi.nlm.nih.gov/34455073/
Cette étude conclut que : « Le vaccin était associé à un excès de risque de myocardite (1 à 5 événements pour 100 000 personnes). Le risque de cet événement indésirable potentiellement grave et de nombreux autres événements indésirables graves a considérablement augmenté après l’infection par le SRAS-CoV-2 : https://www.nejm.org/doi/full/10.1056/NEJMoa2110475
Cette étude conclut que : « Le vaccin était associé à un excès de risque de myocardite (1 à 5 événements pour 100 000 personnes). Le risque de cet événement indésirable potentiellement grave et de nombreux autres événements indésirables graves a considérablement augmenté après l’infection par le SRAS-CoV-2 : https://www.nejm.org/doi/full/10.1056/NEJMoa2110475?query=featured_home
Thompson, MG, Burgess, JL, Naleway, AL, Tyner, H., Yoon, SK, Meece, J., . . . Gaglani, M. (2021). Prévention et atténuation du Covid-19 avec les vaccins BNT162b2 et ARNm-1273. N Engl J Med, 385(4), 320-329. est ce que je:10.1056/NEJMoa2107058. https://www.ncbi.nlm.nih.gov/pubmed/34192428
Perfusion de thromboaspiration et fibrinolyse pour la thrombose portomésentérique après administration du vaccin AstraZeneca COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34132839/
Perfusion de thromboaspiration et fibrinolyse pour la thrombose portomésentérique après administration du vaccin AstraZeneca COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34132839/
Thrombocytopénie et thrombose splanchnique après vaccination avec Ad26.COV2.S traitées avec succès par shunt portosystémique intrahépatique transjugulaire et thrombectomie : https://onlinelibrary.wiley.com/doi/10.1002/ajh.26258
Thrombocytopénie avec accident vasculaire cérébral ischémique aigu et hémorragie chez un patient récemment vacciné avec un vaccin COVID-19 à vecteur adénoviral : https://pubmed.ncbi.nlm.nih.gov/33877737/
Thrombocytopénie avec accident vasculaire cérébral ischémique aigu et hémorragie chez un patient récemment vacciné avec un vaccin COVID-19 à vecteur adénoviral :. https://pubmed.ncbi.nlm.nih.gov/33877737/
Thrombocytopénie, y compris thrombocytopénie immunitaire après avoir reçu des vaccins à ARNm contre la COVID-19, signalée au Vaccine Adverse Event Reporting System (VAERS) : https://pubmed.ncbi.nlm.nih.gov/34006408/
Thrombose et syndrome respiratoire aigu sévère Vaccins contre le coronavirus 2 : thrombocytopénie thrombotique immunitaire induite par le vaccin : https://pubmed.ncbi.nlm.nih.gov/34237213/
Syndrome de thrombose et de thrombocytopénie provoquant une occlusion carotidienne symptomatique isolée après le vaccin COVID-19 Ad26.COV2.S (Janssen) : https://pubmed.ncbi.nlm.nih.gov/34670287/
Thrombose dans la maladie artérielle périphérique et la thrombocytopénie thrombotique après la vaccination adénovirale contre le COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34649281/
Thrombose avec syndrome de thrombocytopénie (TTS) après vaccination avec AstraZeneca ChAdOx1 nCoV-19 (AZD1222) COVID-19 : une analyse risque-bénéfice pour les personnes <60 % analyse risque-bénéfice pour les personnes de <60 ans en Australie : https://pubmed. ncbi.nlm.nih.gov/34272095/
Thrombose avec syndrome de thrombopénie (STT) après vaccination avec AstraZeneca ChAdOx1 nCoV-19 (AZD1222) COVID-19 : une analyse risque-bénéfice pour les personnes < 60 %.
Thrombose avec syndrome de thrombocytopénie (STT) après la vaccination contre la COVID-19 par AstraZeneca ChAdOx1 nCoV-19 (AZD1222) : analyse risque-bénéfice pour les personnes de moins de 60 ans : https://pubmed.ncbi.nlm.nih.gov/34272095/
Événements indésirables thrombotiques signalés pour les vaccins Moderna, Pfizer et Oxford-AstraZeneca contre la COVID-19 : comparaison de l’occurrence et des résultats cliniques dans la base de données EudraVigilance : https://pubmed.ncbi.nlm.nih.gov/34835256/
Événements thrombotiques après vaccination contre le COVID-19 chez les personnes de plus de 50 ans : résultats d’une étude de population en Italie : https://pubmed.ncbi.nlm.nih.gov/34835237/
Tinoco, M., Leite, S., Faria, B., Cardoso, S., Von Hafe, P., Dias, G., . . . Lourenço, A. (2021). Périmyocardite après la vaccination contre le COVID-19. Clin Med Insights Cardiol, 15, 11795468211056634. est ce que je:10.1177/11795468211056634. https://www.ncbi.nlm.nih.gov/pubmed/34866957
Paralysie oculomotrice transitoire après administration du vaccin messager ARN-1273 pour la diplopie du SRAS-CoV-2 après le vaccin COVID-19 : https://pubmed.ncbi.nlm.nih.gov/34369471/
Thrombocytopénie transitoire avec auto-anticorps plaquettaires spécifiques aux glycoprotéines après vaccination avec Ad26.COV2.S : rapport de cas : https://pubmed.ncbi.nlm.nih.gov/34516272/
Traitement de l’accident vasculaire cérébral ischémique aigu associé à la thrombocytopénie thrombotique immunitaire induite par le vaccin ChAdOx1 nCoV-19 : https://pubmed.ncbi.nlm.nih.gov/34461442/
Truong, DT, Dionne, A., Muniz, JC, McHugh, KE, Portman, MA, Lambert, LM, . . . Newburger, JW (2021). Myocardite cliniquement suspectée liée temporellement à la vaccination contre le COVID-19 chez les adolescents et les jeunes adultes. Circulation. est ce que je:10.1161/CIRCULATIONAHA.121.056583. https://www.ncbi.nlm.nih.gov/pubmed/34865500
Tuteur, A., Unis, G., Ruiz, B., Bolaji, OA et Bob-Manuel, T. (2021). Spectre de cardiomyopathie suspectée due au COVID-19 : une série de cas. Curr Probl Cardiol, 46(10), 100926. est ce que je:10.1016/j.cpcardiol.2021.100926. https://www.ncbi.nlm.nih.gov/pubmed/34311983
Deux cas de maladie de Basedow après vaccination SARS-CoV-2 : un syndrome auto-immun/inflammatoire induit par les adjuvants : https://pubmed.ncbi.nlm.nih.gov/33858208/
Les interférons de type I comme mécanisme potentiel reliant les vaccins à ARNm contre la COVID-19 à la paralysie de Bell : https://pubmed.ncbi.nlm.nih.gov/33858693/
Rapports de cas américains de thrombose du sinus veineux cérébral avec thrombocytopénie après vaccination avec Ad26.COV2.S, 2 mars-21 avril 2021 : https://pubmed.ncbi.nlm.nih.gov/33929487/
Umei, T., Kishino, Y., Shiraishi, Y., Inohara, T., Yuasa, S. et Fukuda, K. (2021). Récidive de myopéricardite après vaccination par ARNm COVID-19 chez un adolescent de sexe masculin. CJC ouvert. est ce que je:10.1016/j.cjco.2021.12.002. https://www.ncbi.nlm.nih.gov/pubmed/34904134
Lymphadénopathie axillaire unilatérale liée au vaccin COVID-19 : modèle d’IRM mammaire de dépistage permettant une évaluation bénigne : https://pubmed.ncbi.nlm.nih.gov/34325221/
Lymphadénopathie unilatérale après vaccination contre le COVID-19 : un plan de prise en charge pratique pour les radiologues de toutes spécialités : https://pubmed.ncbi.nlm.nih.gov/33713605/
Résultats d’imagerie uniques de fantosmie neurologique après la vaccination Pfizer-BioNtech COVID-19 : un rapport de cas : https://pubmed.ncbi.nlm.nih.gov/34096896/
Rapports de cas américains de thrombose du sinus veineux cérébral avec thrombopénie après vaccination avec Ad26.COV2.S (contre le covid-19), du 2 mars au 21 avril 2020 : https://pubmed.ncbi.nlm.nih.gov/33929487/
Thrombocytopénie et thrombose associées au vaccin : endothéliopathie veineuse conduisant à une micro-macrothrombose veineuse combinée : https://pubmed.ncbi.nlm.nih.gov/34833382/
Thrombose veineuse cérébrale et thrombocytopénie induites par le vaccin.
Thrombose immunitaire induite par le vaccin et syndrome de thrombocytopénie après vaccination contre le coronavirus 2 du syndrome respiratoire aigu sévère à vecteur adénovirus : une nouvelle hypothèse sur les mécanismes et les implications pour le développement futur d’un vaccin : https://pubmed.ncbi.nlm.nih.gov/34664303/
Thrombocytopénie immunitaire thrombotique immunitaire induite par le vaccin (TTIV) : une nouvelle entité clinicopathologique aux présentations cliniques hétérogènes : https://pubmed.ncbi.nlm.nih.gov/34159588/
Thrombocytopénie immunitaire thrombotique immunitaire induite par le vaccin (VITT) : cibler les mécanismes pathologiques avec les inhibiteurs de la tyrosine kinase de Bruton : https://pubmed.ncbi.nlm.nih.gov/33851389/
Thrombocytopénie thrombotique immunitaire induite par le vaccin (VITT) : une nouvelle entité clinicopathologique aux présentations cliniques hétérogènes : https://pubmed.ncbi.nlm.nih.gov/34159588/
Thrombocytopénie thrombotique immunitaire induite par le vaccin et thrombose du sinus veineux cérébral après la vaccination contre le covid-19 ; une revue systématique : https://pubmed.ncbi.nlm.nih.gov/34365148/
Thrombocytopénie thrombotique immunitaire induite par le vaccin provoquant une forme sévère de thrombose veineuse cérébrale avec un taux de mortalité élevé : une série de cas : https://pubmed.ncbi.nlm.nih.gov/34393988/
Thrombocytopénie thrombotique immunitaire induite par le vaccin provoquant une forme grave de thrombose veineuse cérébrale avec un taux de mortalité élevé : une série de cas : https://pubmed.ncbi.nlm.nih.gov/34393988/
Thrombocytopénie thrombotique induite par le vaccin après vaccination Ad26.COV2.S chez un homme présentant une thromboembolie veineuse aiguë : https://pubmed.ncbi.nlm.nih.gov/34096082/
Thrombocytopénie thrombotique induite par le vaccin : le lien insaisissable entre la thrombose et les vaccins contre le SRAS-CoV-2 à base d’adénovirus : https://pubmed.ncbi.nlm.nih.gov/34191218/
Réactivation du virus varicelle-zona et du virus de l’herpès simplex après vaccination contre le COVID-19 : examen de 40 cas dans un registre dermatologique international : https://pubmed.ncbi.nlm.nih.gov/34487581/
Réactions cutanées vésiculobulleuses induites par le vaccin à ARNm COVID-19 : à propos de quatre cas et revue de la littérature : https://pubmed.ncbi.nlm.nih.gov/34236711/
Vidula, MK, Ambrose, M., Glassberg, H., Chokshi, N., Chen, T., Ferrari, VA et Han, Y. (2021). Myocardite et autres complications cardiovasculaires des vaccins COVID-19 à base d’ARNm. Cureus, 13(6), e15576. est ce que je:10.7759/cureus.15576. https://www.ncbi.nlm.nih.gov/pubmed/34277198
Visclosky, T., Theyyunni, N., Klekowski, N. et Bradin, S. (2021). Myocardite suite au vaccin à ARNm COVID-19. Pediatr Emerg Care, 37(11), 583-584. est ce que je:10.1097/PEC.0000000000002557. https://www.ncbi.nlm.nih.gov/pubmed/34731877
Warren, CM, Snow, TT, Lee, AS, Shah, MM, Heider, A., Blomkalns, A., . . . Nadeau, KC (2021). Évaluation des réactions allergiques et anaphylactiques aux vaccins à ARNm contre la COVID-19 avec des tests de confirmation dans un système de santé régional des États-Unis. JAMA Netw Open, 4(9), e2125524. est ce que je:10.1001/jamanetworkopen.2021.25524. https://www.ncbi.nlm.nih.gov/pubmed/34533570
Watkins, K., Griffin, G., Septaric, K. et Simon, EL (2021). Myocardite après vaccination BNT162b2 chez un homme en bonne santé. Suis J Emerg Med, 50, 815 e811-815 e812. est ce que je:10.1016/j.ajem.2021.06.051. https://www.ncbi.nlm.nih.gov/pubmed/34229940
Weitzman, ER, Sherman, AC et Levy, O. (2021). Attitudes concernant le vaccin à ARNm du SRAS-CoV-2 telles qu’exprimées dans le commentaire public de la FDA des États-Unis : nécessité d’un partenariat public-privé dans un système d’immunisation apprenant. Front Public Health, 9, 695807. est ce que je:10.3389/fpubh.2021.695807. https://www.ncbi.nlm.nih.gov/pubmed/34336774
Welsh, KJ, Baumblatt, J., Chege, W., Goud, R. et Nair, N. (2021). Thrombocytopénie, y compris thrombocytopénie immunitaire, après la réception de vaccins à ARNm contre la COVID-19 signalés au Vaccine Adverse Event Reporting System (VAERS). Vaccin, 39(25), 3329-3332. est ce que je:10.1016/j.vaccine.2021.04.054. https://www.ncbi.nlm.nih.gov/pubmed/34006408
Witberg, G., Barda, N., Hoss, S., Richter, I., Wiessman, M., Aviv, Y., . . . Kornowski, R. (2021). Myocardite après vaccination contre le Covid-19 dans un grand organisme de santé. N Engl J Med, 385(23), 2132-2139. est ce que je:10.1056/NEJMoa2110737. https://www.ncbi.nlm.nih.gov/pubmed/34614329
Jeune homme atteint de myocardite après une vaccination par ARNm contre la maladie à coronavirus ARNm-1273-2019 (COVID-19) : https://pubmed.ncbi.nlm.nih.gov/34744118/
Zimmermann, P. et Curtis, N. (2020). Pourquoi le COVID-19 est-il moins grave chez les enfants ? Un examen des mécanismes proposés sous-tendant la différence de gravité liée à l’âge des infections par le SRAS-CoV-2. Arch Dis Enfant. est ce que je:10.1136/archdischild-2020-320338. https://www.ncbi.nlm.nih.gov/pubmed/33262177
Cette fois j’y serai! Merci de partager l’information, y compris à vos amis européens, ceci nous concerne tous!
Frédéric Baldan, Notre Bon Droit, le parti germanophone « Vivant », la Pologne, la Hongrie et plus de mille parties civiles citoyennes ont intenté un procès contre Ursula Von der Leyen, dans le cadre de la négociation des contrats Pfizer et BioNtech, pendant la crise Covid. Le 6 janvier 2025 un jugement devrait enfin être prononcé.
L’action a été introduite auprès des tribunaux belges et devrait normalement pouvoir être jugée par la justice de notre pays. Mais l’EPPO, le parquet de justice de l’Union européenne tente de s’immiscer dans ce procès pour forcer nos juges à leur transmettre l’affaire. Si la Belgique se dessaisit au profit de l’UE, les plaignants perdront leur chance. Si, au contraire elle confirme sa compétence, l’action pourra poursuivre son cours et d’autres plaignants de différents pays pourront encore venir grossir les rangs des indignés.
L’audience de ce 6 janvier est donc d’une importance capitale.
Venez nombreux manifester votre présence.
Rappel:
En avril 2023, le lobbyiste belge Frédéric Baldan a déposé une plainte pénale avec constitution de partie civile auprès du tribunal de Liège contre Ursula von der Leyen, présidente de la Commission européenne, pour des actes graves et potentiellement illégaux dans la gestion des contrats de vaccins COVID-19.
Pourquoi cette plainte ?
En avril 2021, des révélations ont indiqué que Mme von der Leyen aurait négocié directement, sans mandat explicite des États membres, un contrat d'achat de vaccins avec le groupe Pfizer, représentant des milliards d'euros. Ces négociations, menées via des échanges de SMS avec le PDG de Pfizer, Albert Bourla, ont été critiquées pour leur manque de transparence. De plus, la suppression présumée de ces SMS soulève des questions sur la destruction de documents publics.
Ce que cela signifie :
L’Office du Procureur Européen (EPPO), chargé de lutter contre la fraude affectant les intérêts financiers de l’UE, a déclaré lors d’une audience publique qu’aucune victime identifiable ne pouvait être déterminée dans cette affaire, rendant les faits difficiles à établir juridiquement. Cette position néglige une réalité fondamentale : nous, citoyens européens, sommes les victimes directes de ces décisions opaques, quel que soit notre statut vaccinal.
En devenant plaignants, nous affirmons que ces agissements nous ont lésés collectivement :
• Nos impôts ont financé des contrats passés dans des conditions opaques, contraires aux principes de bonne gouvernance.
• Nous avons été soumis à des décisions sanitaires contraires aux droits fondamentaux et à la Charte des Doits fondamentaux de l’UE, ainsi qu’à des décisions financières prises sans transparence ni concertation.
• Notre confiance envers les institutions européennes, garantes de la démocratie et de la justice, a été profondément ébranlée.
Un appel à tous les citoyens de l’UE
Cette plainte, initiée en Belgique, dépasse nos frontières nationales : elle concerne tous les Européens. En élargissant cette action à l’échelle de l’Union, nous pouvons démontrer que les citoyens européens refusent de rester passifs face à des abus qui affectent leurs droits, leurs finances et leur santé.
Ce que nous demandons :
• La tenue d’une enquête pénale indépendante des institutions de l’UE:
Nous exigeons qu’une enquête approfondie et impartiale soit menée pour faire toute la lumière sur les actes reprochés à Ursula Von Der Leyen et aux responsables impliqués. Cette enquête doit garantir la transparence et répondre aux attentes des citoyens européens.
• La contestation de la légitimité de l’EPPO pour ce dossier :
Bien que l’Office du Procureur Européen (EPPO) soit officiellement chargé de la lutte contre les infractions portant atteinte aux intérêts financiers de l’Union, nous remettons en question sa capacité à traiter ce dossier pour plusieurs raisons :
o Conflit d’intérêts institutionnel : L’EPPO est étroitement lié aux institutions européennes, ce qui soulève des doutes sur sa capacité à enquêter de manière indépendante sur des faits impliquant la présidente de la Commission européenne, l’une des figures centrales du pouvoir exécutif de l’UE.
o Position de l’EPPO lors d’une audience publique : L’EPPO a déclaré qu’il n’existait « aucune victime identifiable » dans cette affaire, une affirmation que nous contestons fermement. Chaque citoyen européen, quel que soit son statut vaccinal, a été de à la transparence démocratique.
o Les limites des missions de l’EPPO : Les compétences de l’EPPO se concentrent sur les fraudes affectant le budget européen. Or, dans ce dossier, les contrats de vaccins ont été honorés financièrement par chaque État membre, individuellement, et non par un financement direct de l’Union européenne. Ursula Von Der Leyen elle-même l’a admis : pas un euro du budget de l’UE n’a été utilisé pour ces contrats. Cela rend inadaptée la juridiction de l’EPPO pour traiter ces infractions potentielles.
Ensemble, nous avons la responsabilité de protéger nos droits fondamentaux mais aussi un modèle de société qui replace la justice, la transparence et l’équité au centre de la gouvernance. Ce n’est qu’en nous mobilisant que nous pourrons exiger des comptes et restaurer la confiance dans nos institutions.
Rejoignez-nous et rejoignez Frédéric Baldan pour défendre nos droits face aux lobbies pharmaceutiques.
Voir aussi France-Soir : 📽UrsulaGates : en plus des plaintes visant Ursula von der Leyen, Frédéric Baldan et Diane Protat annoncent lors de leur conférence de presse avoir porté plainte contre Laura Kövesi, cheffe de l’EPPO, le parquet européen.
De nombreuses personnes « vaccinées » anti-COVID-19 sont stupéfaites aujourd’hui de découvrir ce que sont réellement les ARN messagers qui prennent le contrôle de la production de leurs cellules ainsi que de la quantité d’ARN messagers introduit à chaque injection (14 000 milliards pour Pfizer-BioNTech et 47 000 milliards pour le Moderna). Ils se demandent pourquoi leur injecteur n’a pas abordé ces sujets avec eux avant qu’ils donnent leur consentement libre et éclairé mais aussi ceux de l’absence totale d’essais cliniques et des effets secondaires connus au jour de l’injection. Certains injectés ont entendu parler de turbo cancer, myocardite, péricardite, maladie de Hashimoto et de Basedow, maladie auto-immune, diabète, thrombose, Guillain-Barré, Creutzfeld-Jakob, maladie de Charcot (SLA), Parkinson, démence, Alzheimer, épilepsie, Cholestase, SIBO, SAMA, SAM, hypo-kaliémie, etc. et ressentent en permanence une « épée de Damoclès » au-dessus de leur tête.
De nombreuses personnes ressentent une atteinte de leur consentement libre et éclairé à l’injection par leur injecteur et s’interrogent aujourd’hui sur les éventuels recours.
Une autre question se pose également sur l’obligation vaccinale, notamment pour les enfants, au regard du consentement libre et éclairé.
Nous interrogeons donc Maître JOSEPH, Doyen des avocats au barreau de Grenoble, afin de répondre à ces questions.
PG : Maître, quelles sont les obligations d’un injecteur (médecins, pharmaciens, soignants etc.) avant d’administrer un « vaccin » à une personne ?
Maître Joseph : Il y a notamment quatre grandes obligations qui sont imposées à l’injecteur.
1) Obligation pour l’injecteur d’informer la personne avant l’injection :
Cette obligation est d’abord contenue dans l’alinéa 2 de l’article 5 de la Convention d’Oviedo ratifiée par la France le 13 décembre 2011 et entrée en vigueur le 1 avril 2012 :
« Cette personne reçoit préalablement une information adéquate quant au but et à la nature de l’intervention ainsi que quant à ses conséquences et ses risques » ;
Elle est ensuite, également présente dans l’alinéa premier de l’article L1111-2 du code de la santé publique :
[… ] Cette information porte sur les différentes investigations, traitements ou actions de prévention qui sont proposés, leur utilité, leur urgence éventuelle, leurs conséquences, les risques fréquents ou graves normalement prévisibles qu’ils comportent […] ;
Enfin, dans l’arrêt du 3 juin 2010, publié au bulletin (pourvoi n° 09-13.591) la première Chambre civile de la Cour de cassation a rendu une décision en la fondant sur articles 16 et 16-3, alinéa 2, du code civil :
« Il résulte des articles 16 et 16-3, alinéa 2, du code civil que toute personne a le droit d’être informée préalablement aux investigations, traitements ou actions de prévention proposés, des risques inhérents à ceux-ci, et que son consentement doit être accueilli par le praticien, hors le cas où son état rend nécessaire une intervention thérapeutique à laquelle elle n’est pas à même de consentir.»
2) Obligation pour l’injecteur d’informer la personne sur les autres solutions possibles :
Cette obligation est présente dans l’alinéa premier de l’article L1111-2 du code de la santé publique :
[… ] Cette information porte sur les différentes investigations, traitements ou actions de prévention qui sont proposés, leur utilité, leur urgence éventuelle, leurs conséquences, les risques fréquents ou graves normalement prévisibles qu’ils comportent ainsi que sur les autres solutions possibles et sur les conséquences prévisibles en cas de refus. [… ] ;
3) Sur la base des informations communiquées à la personne, obligation est faite à l’injecteur de recueillir expressément de ladite personne son consentement libre et éclairé :
Cette obligation est contenue dans l’alinéa premier de l’article 5 de la Convention d’Oviedo précitée :
« Une intervention dans le domaine de la santé ne peut être effectuée qu’après que la personne concernée y a donné son consentement libre et éclairé. »
Elle est aussi contenue dans l’alinéa 3 de l’article Article L1111-4, du code de la santé publique :
« Aucun acte médical ni aucun traitement ne peut être pratiqué sans le consentement libre et éclairé de la personne et ce consentement peut être retiré à tout moment. »
4) En cas de litige, repose alors sur l’injecteur la charge de la preuve des trois obligations précitées.
L’injecteur a dès lors l’obligation de démontrer par tous moyens la délivrance desdites informations ainsi que le recueillement du consentement libre et éclairé.
Attention, le code de la Santé publique inverse explicitement la charge de la preuve dans cette hypothèse, qui incombe alors à l’injecteur.
En effet comme nous l’indiquel’alinéa 7 de l’article L1111-2du code de la santé publique :
« En cas de litige, il appartient au professionnel ou à l’établissement de santé d’apporter la preuve que l’information a été délivrée à l’intéressé dans les conditions prévues au présent article. Cette preuve peut être apportée par tout moyen. »
PG : Quelles informations l’injecteur doit-il fournir à la personne avant de recueillir son consentement libre et éclairé ?
Maître Joseph : Il ressort de la lettre du ministre de la santé OLIVIER VÉRAN envoyée au président de l’Ordre des médecins en date du 23 décembre 2020, que « la responsabilité des médecins ne pourra pas être engagée au motif qu’ils auraient délivré une information insuffisante aux patients sur les effets indésirables méconnus à la date de vaccination ».
Ainsi, si cette responsabilité ne peut, certes, pas être engagée au motif d’une information insuffisante portant sur des effets méconnus à la date d’injection mais il apparait évident que cette responsabilité sera dès lors engagée par le Juge en cas d’information insuffisante portant sur des effets connus à la date de vaccination !
Ainsi, au regard de ce syllogisme évident, il apparait indispensable à l’injecteur d’indiquer à la personne toutes les informations pertinentes connues au jour de l’injection.
Nous entendons ainsi :
– Tous les bénéfices du « vaccin » ;
– Si la substance à injecter à fait, ou non , l’objet d’essais cliniques et à quel endroit la personne peut les consulter ;
– La technologie vaccinale proposée et ses mécanismes d’action comme par exemple s’il s’agit d’un virus atténué (vaccins traditionnel) ou s’il s’agit d’un vaccin à ADN recombiné ou ARN messagers ou bien ARN messagers auto-répliquant / auto-amplifiant. Dans les cas des ARN messagers (codage génétique) l’injecteur doit dès lors expliquer à la personne son mécanisme (prise de contrôle de la production cellulaire afin de produire une des protéines signature du virus) et la quantité d’ARN messager injectés ainsi que la quantité d’ARN messagers injectée par le produit.
Or, dès les premiers mois de la campagne de vaccination COVID-19, le nombre de déclarations d’effets indésirables enregistrés à la pharmacovigilance, était colossal par rapport aux vaccins classiques : en mai 2021, 37.000 déclarations dont 26% graves au bout de 5 mois : du jamais vu !!
PG : Quels sont les risques pour un injecteur dans l’impossibilité d’apporter la preuve que toutes les informations pertinentes ont été délivrées et que le consentement libre et éclairé a été obtenu ?
Maître Joseph : Le risque est que la personne insuffisamment informée puisse donc ester en justice contre son injecteur sur le fondement de la responsabilité délictuelle de l’article 1240 du code civil (ancien article 1382) pour, notamment, obtenir des dommages et intérêts au titre de :
Son préjudice moral de ne pas avoir été informé correctement avant l’injection et donc pour le non-respect de son consentement éclairé, qui a donc été vicié.
Ainsi, dans son arrêt du 3 juin 2010, publié au bulletin, (pourvoi n° 09-13.591) la première Chambre civile de la Cour de cassation précise :
« Dès lors, le non-respect du devoir d’information qui en découle, cause à celui auquel l’information était légalement due, un préjudice que le juge ne peut, sur le fondement de l’article 1382 du code civil, laisser sans réparation » ;
Son préjudice physique et de souffrance (pretium doloris) relatifs aux complications post-vaccinales qui ne seraient jamais advenues si l’injecteur lui avait correctement et explicitement communiqué toutes les informations indispensables avant qu’il ne donne son consentement libre et éclairé et se fasse injecter.
PG : Quels sont donc les recours civils possibles pour les personnes injectées par le « vaccin » COVID-19 ?
Maître Joseph : Le recours en responsabilité délictuelle, tel que je viens de vous l’expliquer dans les réponses précédentes avec la spécificité que la charge de la preuve est inversée, se traduira par le fait que toute personne lésée pourra légalement exiger de son injecteur la démonstration qu’elle a été correctement et suffisamment informée et que son consentement à la fois libre et éclairé a été recueilli de façon non viciée.
Il s’agit d’une action indemnitaire consistant à demander au Juge des dommages et intérêts pour le préjudice subi, en raison de la faute de l’injecteur liée au défaut d’information et au non-respect du consentement libre et éclairé qui constitue une faute civile à même d’engager la responsabilité pécuniaire de l’injecteur au sens de l’article 1240 du code civil (ancien 1382).
Je précise toutefois que cette action doit être menée rapidement car elle se prescrit par 10 ans, s’agissant d’un problème de responsabilité médicale (art. L1142-28 du Code de la Santé Publique)
PG :Quelles sont les obligations d’un injecteur concernant les vaccins obligatoires, notamment ceux des enfants ?
Maître Joseph : L’obligation vaccinale ne retire en rien les obligations déontologiques de l’injecteur et à ce titre, l’obligation d’information et de recueillir le consentement libre et éclairé :
Ainsi, il incombe à l’injecteur :
A) D’informer l’enfant et son tuteur légal de tous bénéfices et risques de l’injection du produit à injecter ainsi que de la singularité des technologies employées (virus inactivé, virus atténué, vaccins à protéine(s) recombinante(s), ARN messagers, ARN messagers auto-répliquants / auto-amplifiants etc.), tout comme leur mécanisme d’action, ainsi que le précise la Convention d’OVIEDO soumettant l’injecteur à l’obligation de délivrer « une information adéquate quant au but et à la nature de l’intervention » ;
B) D’obtenir de l’enfant et/ou de son tuteur légal un consentement libre et éclairé.
PG : Que se passe-il quand l’enfant et/ouson tuteur légal ne donne pas de consentement libre et éclairé et donc refuse le produit à injecter ?
Maître Joseph : Le refus porte sur le produit et non sur le principe de l’injection obligatoire. De même, un produit qui n’a pas fait l’objet d’essais cliniques ne peut en aucun cas servir de base à une vaccination obligatoire sinon l’Etat serait en contradiction avec les principes énoncés dans le Code de NUREMBERG. C’est une formalité nécessaire au regard des principes fondamentaux d’ordre constitutionnels.
Rappelons aussi que l’injecteur ne peut pas passer outre un refus de consentement que la personne peut retirer à tout moment (Convention d’Oviedo) sauf à se rendre coupable d’une atteinte à l’intégrité physique qui pourrait relever outre du contentieux disciplinaire de l’injecteur mais aussi de sa responsabilité civile ainsi que je l’ai évoqué précédemment.
En effet, si le produit proposé pour l’injection obligatoire, est notamment dépourvu d’essais cliniques légaux sur chaque vaccins et adjuvants mais aussi, sur « l’effet cocktail » de plusieurs vaccins et « l’effet cocktail » des adjuvants (nature et diversité des adjuvants et surtout interaction entre eux pouvant mener à des effets délétères graves) et/ou présente des effets secondaires graves, la non délivrance d’un consentement libre et éclairé sur le « produit » ne doit pas être considéré comme un refus de se soumettre à l’obligation vaccinalemais comme un refus de se soumettre à une atteinte à l’intégrité physiqueforcée et un excès de pouvoir de l’autorité publique qui doit impérativement relever du contrôle du Juge dans un état de droit.
Rappelons qu’en vertu de l’article 66 de la Constitution de 1958, l’autorité judiciaire est « gardienne de la liberté individuelle ».
Nous portons à votre connaissance les faits suivants : I – L’article 49 de la loi n° 2017-1836 du 30 décembre 2017 de financement de la sécurité sociale pour 2018 et son décret d’application ont fortement modifié les articles du Code de la Santé Publique relatifs aux obligations vaccinales et leur modalité pour les enfants. Ces obligations vaccinales ont été élargies du DTP à 11 vaccins, soumettant l’entrée en collectivité à ces injections.
Or cet article 49 stipule au paragraphe V « Une évaluation de l’impact de l’élargissement des obligations vaccinales est réalisée par le Gouvernement chaque année à compter du dernier trimestre 2019. Elle est rendue publique. »
Cinq ans plus tard, malgré la demande de la part de la LNPLV, aucun document n’a été transmis. Ces évaluations existent-elles ? Pourquoi ne sont-elles pas communiquées ?
Comment dès lors examiner les impacts sanitaires, sociaux, sociétaux, environnementaux et financiers de ces nouvelles obligations ? Impossible de vérifier si c’était une bonne décision pour nos enfants.
II – Les 29 mars et 27 juillet 2023, la Haute autorité de santé (HAS) a publié deux actualisations des recommandations et obligations vaccinales des professionnels.
Dans la première, la HAS préconise que : – « La vaccination DTP soit fortement recommandée chez les étudiants et professionnels, sauf à Mayotte où elle devrait rester obligatoire… », soit la levée de l’obligation.
– « Pour l’hépatite B,(…) l’obligation d’immunisation concernant les étudiants soit maintenue à l’identique. »
– « La vaccination contre la Covid-19 soit fortement recommandée. » Cette obligation a été suspendue par le décret n° 2023-368 du 13 mai 2023.
Dans la seconde recommandation, la HAS préconise que : – les recommandations de vaccination contre la coqueluche, la grippe, l’hépatite A et la varicelle soient maintenues, – « Une obligation d’immunisation contre la rougeole soit mise en place pour les étudiants et professionnels pour lesquels cette vaccination est actuellement recommandée. » Ce vaccin n’existant pas en monovalent, cela serait de fait une obligation déguisée des valences rubéole et oreillons.
Tout comme le calendrier vaccinal, ces préconisations pourront évoluer chaque année pour suivre l’actualité épidémiologique des maladies, rendant difficile le contrôle des immunisations par les personnes habilitées à le faire (écoles, crèches, médecins, etc.). Bien trop souvent encore, ces dernières confondent vaccinations obligatoires et recommandés, ce qui complique les démarches de nos concitoyens pour avoir accès aux collectivités ou à un emploi.
III – La crise covidienne a révélé d’innombrables problèmes sur notre système de santé et les conséquences désastreuses des décisions politiques prises pour y faire face. Nous n’en retiendrons que deux. – L’obligation vaccinale contre le SRAS-CoV-2 des soignants, pompiers et autres professionnels de santé et leur suspension a privé de ressources des dizaines de milliers de personnes dont certaines furent réduites à la mendicité. Elle a aussi privé nos concitoyens de professionnels compétents pour gérer les flux des malades ou blessés, entraînant davantage la France dans une récession sanitaire. Tout cela pour un vaccin reconnu aujourd’hui comme peu efficace contre la transmission. Pire, des professionnels atteints de covid mais vaccinés ont continué à soigner des malades parce que réquisitionnés pour manque de personnel. À cela, s’ajoute la coercition du passe sanitaire puis vaccinal qui a obligé la population à s’inoculer un produit expérimental, souvent contre son gré. – Les thromboses, troubles de la fertilité et cardiaques (myocardites, péricardites…) sont les effets indésirables les plus documentés et les plus courants des vaccins covid. Outre les frais de soins qu’ils entraînent pour la collectivité, l’ONIAM (Office National d’Indemnisation des Accidents Médicaux, des Affections Iatrogènes et des Infections Nosocomiales) a commencé à indemniser les victimes des inoculations covid, aux frais du contribuable donc, puisque qu’il y a eu obligation vaccinale. De plus, les contrats avec les fabricants exonèrent ceux-ci de toute responsabilité.
IV – Par décision du 7 septembre 2023, l’Agence nationale de sécurité du médicament et des produits de santé (ANSM) a classé « sur la liste I des substances vénéneuses, les médicaments à usage humain contenant tout ou parties des bactéries ou des virus suivants sous toutes leurs formes et quels que soient leur groupe, leur souche ou leur variant : • Bordetella pertussis ; • Haemophilus influenzae ; • Leptospira icterohaemorrhagiae ; • Neisseria meningitidis ; • Salmonella typhi ; • Streptococcus pneumoniae ; • Virus de l’encéphalite japonaise ; • Virus de la fièvre jaune ; • Virus de l’hépatite B ; • Virus des oreillons ; • Virus de la poliomyélite ; • Virus de la rougeole ; • Virus de la rubéole ; • Virus de la vaccine »
Neuf de ces microbes correspondent aux obligations vaccinales pédiatriques (Bordetella pertussis, Haemophilus influenzae, Neisseria meningitidis, Streptococcus pneumoniae, Virus de l’hépatite B, Virus des oreillons, Virus de la poliomyélite, Virus de la rougeole,Virus de la rubéole), deux aux obligations des professionnels de santé et assimilés (Virus de l’hépatite B, Virus de la poliomyélite) et le Virus de la fièvre jaune correspond à l’obligation vaccinale des habitants ou voyageurs pour la Guyane.
En résumé, dix des vaccins obligatoires en France viennent d’être classés sur la liste I des substances vénéneuses définies par l’article L.5132-6 du code de la santé publique. Or, ce dernier indique que : « Les listes I et II mentionnées au 4° de l’article L. 5132-1 comprennent : 2° Les médicaments à usage humain susceptibles de présenter directement ou indirectement un danger pour la santé ; 3° Les médicaments à usage humain contenant des substances dont l’activité ou les effets indésirables nécessitent une surveillance médicale ; 5° Tout autre produit ou substance présentant pour la santé des risques directs ou indirects.
La liste I comprend les substances ou préparations, et les médicaments à usage humain et produits présentant les risques les plus élevés pour la santé »
Il est inconcevable d’obliger les personnes, à plus forte raison des bébés, à recevoir un vaccin qui présente autant de risques, sans faire une réelle étude du bénéfice/risque individuel. L’obligation vaccinale devient donc une aberration au vu de ces derniers éléments.
Pour toutes ces raisons, nous réclamons l’abrogation de toutes les obligations vaccinales, pour toute la population, civils ou militaires, sur tous les territoires français.
Ligue Nationale Pour le Liberté des Vaccinations Info Vaccins France
Voilà un article qui ne manquera pas d’attiser l’incrédulité agressive de certains car bien sûr que oui, certains dispositifs générateurs d’ondes admettent bien de larges capacités thérapeutiques, possiblement bien supérieures au potentiel accessible à la simple chimie du médicament conventionnel. Depuis quand et pour quoi faire, c’est Sylvie Henry-Réant, membre du conseil scientifique AIMSIB, qui a répondu pour nous aux questions posées par Esther Einrich : oublier Flexner et le massacre culturel qu’il a réussi à infuser dans nos esprits ? Bonne lecture.
Esther Einrich : Bonjour Sylvie, tu es formatrice en physique appliquée à la biologie au sein d’Aton Atl depuis 2015. Ton expertise va nous aider à mieux comprendre les possibilités thérapeutiques offertes par l’emploi des ondes sur le corps humain. Nous avons tous entendu parler des machines utilisées en Russie, en Allemagne, en Pologne, en Bulgarie, et dans bien d’autres pays, les praticiens s’en servent depuis longtemps pour soigner l’inflammation, l’arthrose, gérer les suites postopératoires, pallier la douleur, résorber les fractures, renforcer le système immunitaire, réduire les tumeurs, estomper la dépression… Tu veux bien nous faire un bref rappel historique des premières découvertes scientifiques en la matière ?
Sylvie Henry-Réant : L’utilisation d’ondes sur le corps humain date de la nuit des temps. Des hiéroglyphes en Égypte montrent que la baguette de sourcier était utilisée. Au temps des Lumières, Messmer envoyait des ondes et du magnétisme sur les personnes pour les soigner. La vibration sonore a également été utilisée pour soigner les populations en Afrique (tam-tams et tambours, vagues de la mer…). Beaucoup plus tard, c’est Lakhovsky qui a été le précurseur en France. Il pensait que « les maladies ont pour cause un déséquilibre oscillatoire cellulaire provoqué par des causes extérieures ou intérieures ». En conséquence, il suffisait de rééquilibrer les champs entre nos cellules et les ondes cosmiques pour soigner les maladies. Pour Lakhovsky, il n’a jamais été question de détruire les cellules malades, mais de les aider à retrouver leurs oscillations habituelles, leurs propres fréquences de vibration.
Lakhovsky, entre 1930 et 1940, a guéri des cancers en phase terminale avec un bon taux de réussite. L’appareil demande de la prudence à l’utilisation, car il émet des ondes sous un très haut voltage (basse puissance) et les antennes qui ne doivent pas être touchées, sont très accessibles. Il existe actuellement en France un appareil fonctionnel en banlieue parisienne. Suite à Lakhovsky, il y a eu une quantité impressionnante de techniciens, ingénieurs, thérapeutes qui ont créé des machines de rééquilibrage, basées sur différents principes théoriques. On peut en citer quelques-unes. Celle du Dr Voll fait de l’électro-acupuncture. La machine Mora est basée sur un principe de radiesthésie où un système électronique est censé enregistrer l’émanation ondulatoire de la personne, en inverser la phase pour la lui renvoyer afin d’annuler le système dysfonctionnel. Il y a également des machines à ondes pulsées (0 – 100 Hz) pour guérir des problèmes essentiellement articulaires ou inflammatoires. Un certain nombre de médecins ont écrit des ouvrages sur le sujet pour vanter leurs réussites mais rares sont ceux qui, comme le Dr Georges Dussert, décrivent suffisamment les caractéristiques des ondes utilisées pour que ce soit exploitable.
L’histoire a joué son rôle dans le développement de la médecine par les ondes. En Russie, sous un régime communiste dès 1917, il y avait peu de moyens financiers au service du peuple, et une industrie chimique misérable : beaucoup de travaux en santé se sont portés sur l’emploi des ondes, remède idéal, bon marché. Des appareils russes ont ensuite commencé à être commercialisés en Europe. Ils ont aussi été copiés par des chercheurs européens qui ont proposé un certain nombre de modèles.
En Europe, à la fin de la guerre de 1914, la situation est autre : il faut recycler les outils de production des substances chimiques toxiques utilisés pendant la guerre. Les entreprises de la chimie cherchent à maintenir leur chiffre d’affaires, ce qu’elles font en commercialisant des médicaments et des produits phytosanitaires. Les principaux actionnaires de ces industries et les banques associées font des pieds et des mains pour supprimer les médecines alternatives non chimiques en Europe. Après des années de combats, ils ont réussi à faire en sorte que la phytothérapie ne soit plus reconnue en France, et finalement, en 2018, à éjecter l’homéopathie. Toutes les techniques alternatives à base d’ondes développées en 1914 et 1940 ont été considérées comme du charlatanisme. Aux États-Unis, le rapport Flexner, établi en 1910 pour l’institut Carnegie, a eu pour conséquence d’ostraciser toutes les techniques médicales non conformes aux standards du modèle européen de médecine.
Malgré cela, en Europe les appareils de « soins ondulatoires » commencent à se développer dans les années 1960 et il y a une forte progression depuis les années 2000.
Depuis Lakhovsky beaucoup pensent donc que des étoiles aux cellules du corps humain, l’univers est régi par les vibrations et leur flux. Sonothérapie, thérapies utilisant les ondes électromagnétiques, médecine informationnelle, bio-résonance, thérapies utilisant les ondes lumineuses sont quelques exemples de pratiques qui agissent sur les vibrations et leur flux, mais elles ne fonctionnent pas toutes de la même façon, peux-tu nous aider à y voir plus clair ?
Pour essayer de s’y retrouver au sein de toutes ces ondes thérapeutiques, il faut revenir aux fondamentaux : – Qu’est-ce qu’une onde ? – Quelles sont ses principales caractéristiques ?
Une onde est quelque chose qui oscille avec une certaine amplitude. Si ce qui oscille est une pression, ce sont des ondes de type sonore (ou un tremblement de terre !) ; si ce qui oscille est un champ électrique ou magnétique, ce sont les ondes électromagnétiques. Ce sont les deux principales ondes utilisées en thérapie. Les ondes électromagnétiques (EM) sont extrêmement nombreuses et se caractérisent par leurs fréquences qui peuvent aller de quelques fractions de Hertz jusqu’à des milliards, voire des milliers de milliards de Hertz. Voici un spectre des différentes ondes électromagnétiques qui peuvent exister afin de pouvoir s’y retrouver.
Selon leur utilisation, les ondes EM se répartissent dans les domaines suivants : • 20 à 20 000 Hz (spectre des ondes sonores audibles) • courant électrique et communication sur ses lignes : 50 à 33 000 Hz • de 20 000 Hz à 1 MHz (spectre des ondes ultrasonores ) • ondes radios entre 200 kHz jusqu’à 200/300 MHz • ondes intermédiaires (micro-ondes) de l’ordre du GHz, utilisées comme porteuses pour le Wi-fi, les radars, les fours à micro-ondes. Elles ont la propriété de chauffer tellement qu’elles permettent la cuisson. • infrarouges : 1012 Hz à 1013,5 Hz • lumière visible autour de 1013,5-14 Hz • ultra-violets : 1015 Hz • rayons X, puis les ondes cosmiques
Nous comprenons que les ondes interagissent sur le vivant de façon différente selon leurs caractéristiques, elles peuvent ainsi affaiblir, tuer, guérir ou régénérer selon le cas. Comment agissent-elles sur le vivant ?
• Les ondes de fréquences très élevées, UV haute fréquence, rayon X, gamma, et cosmiques vont avoir des effets délétères sur la structure physiologique, et sont toujours toxiques. • certains ultraviolets sont utilisés par la peau pour fabriquer de la vitamine D. Leur intensité et la durée d’exposition doivent être limitées sous peine de causer des brûlures. • Les ondes visibles sont plutôt bénéfiques à condition que leur densité ne soit pas trop élevée sinon on peut avoir un effet énergétique trop important. • Les ondes infrarouges sont bénéfiques. Ce sont celles avec lesquelles on se chauffe, et évidemment quand c’est trop, c’est trop. Et si on met les mains dans le feu, on se brûle. • Les ondes GHz sont utilisées comme porteuses pour la téléphonie, le wifi, le Bluetooth, la 5G. Qui utilise un téléphone, ou est proche d’une antenne, est irradié d’ondes avec des fréquences variables allant du MHz au GHz. Les ondes GHz interagissent avec l’eau du corps. Elles engendrent une rotation des molécules d’eau. C’est l’eau qui bout dans les fours à micro-ondes. L’exposition à une densité trop importante de ces ondes provoque la cuisson. Si la puissance n’est pas trop forte, il y aura une perturbation cellulaire, mais l’être impacté y survivra. • Les ondes d’une fréquence plus faible de l’ordre du MHz, peuvent interagir avec certains processus vitaux, notamment avec les pulses générés par les courants ioniques du corps au travers des canaux protéiques dans les membranes. Cette interaction est fonction de la façon dont la fréquence des ondes EM externes est calée avec la fréquence des pulses ioniques internes et la façon dont la protection naturelle du corps intervient. • Les ondes à plus basses fréquences, dans le domaine du son, peuvent interagir directement avec les processus vivants. Elles sont utilisées à des fins thérapeutiques, notamment dans les cabinets de kinésithérapie pour le renforcement osseux.
Les protéodies ou musique des protéines est un concept créé par le physicien français Joël Sternheimer dans les années 1960-1980. Il a découvert que les ondes de matières associées aux acides aminés qui composent une protéine, peuvent être transposées dans la gamme tempérée de Bach. Les notes ainsi obtenues, jouées selon l’ordre où elles se présentent dans la protéine, correspondent à une musique, la protéodie. Certaines se retrouvent dans des œuvres classiques. Par exemple, dans le Printemps de Vivaldi, on retrouve une grande partie de la musique associée à l’actine, particulièrement active au printemps. L’émission d’une protéodie active ou inhibe le fonctionnement de la protéine qui y est associée. La protéodie est quelque chose de très très puissant, pouvant être bénéfique mais facilement très toxique. ◦ Certaines plantes peuvent émettre de façon bénéfique, des parties de protéodies : voir les travaux de Jean Thoby.
• Les ondes très basses fréquences, en dessous de 1 000 Hz, sont associées au courant électrique et de ses harmoniques, à certains protocoles de courants porteurs en lignes (CPL). Le courant électrique du réseau domestique, c’est 50 Hz. Mais sur nos réseaux électriques se trouvent toutes sortes de fréquences allant jusqu’à 5 000 Hz, voire des pulses aux environs de 32 000 Hz. Ces fréquences parasites sont induites par les transformateurs, et par le CPL. Le CPL est un protocole de télécommunication utilisé pour faire passer internet sur le réseau électrique ou généré par le Linky et la domotique. Le CPL n’est pas arrêté par les compteurs électriques. Ces fréquences interfèrent aussi avec notre fonctionnement biologique. Certaines sont même utilisées en thérapie. La différence entre les fréquences parasites sur nos lignes électriques et la thérapie est le mode opératoire. Les fréquences parasites sont diffusées de façon arbitraire et en quasi continu. En thérapie, la fréquence et sa modulation sont choisies avec soin et appliquées sur une durée limitée. Une dose trop élevée est néfaste.
Si dans mes cours j’explique pourquoi et comment les différents types d’ondes interagissent avec le vivant et l’humain en particulier, les thérapeutes n’ont pas attendu de le savoir pour les utiliser. Comme pour les plantes médicinales, ils ont utilisé leur intuition et la méthode essai – réussite – erreur pour établir leurs protocoles.
Effectivement il y a plusieurs appareils de soin disponibles sur le marché, sur quels critères se baser pour faire le bon choix ?
Il existe actuellement sur le marché pléthore de machines qui ont toutes des spécificités différentes voire des machines qui ont toutes les spécificités possibles pour être sûr de couvrir tous les besoins et choix des clients.
1 – Des machines utilisent les champs magnétiques, fixes ou pulsés, les micro-courants, continus ou pulsés ou les ondes électromagnétiques mono-fréquence ou pulsées. 2 – D’autres machines mettent en avant « les ondes scalaires », mot mystérieux qui en « jette ». Le mot vient de traductions erronées du russe. Il faudrait parler d’ondes de torsion, qui est un type d’onde différent des ondes électromagnétiques usuelles, liées à une ou des configurations particulières d’états de spins électroniques.
Autant le fonctionnement des machines de type 1 est mis en évidence facilement, autant le fonctionnement des machines de type 2 est compliqué à constater. Actuellement, à en croire les constructeurs, chaque appareil peut fonctionner sur tous les modes existants ou presque. Toutefois, il existe encore des machines spécifiques, plus adaptées à un mode de fonctionnement qu’un autre. Pour bien utiliser tous ces appareils, il me semble nécessaire d’avoir une bonne connaissance de la physiologie et de connaître l’effet des différentes ondes sur le corps, et ce qu’on peut en attendre. Le vrai problème est de trouver les bonnes références ! Il existe des bases de données d’origines diverses, où des fréquences thérapeutiques sont données. Toutefois il y a peu d’études où tous les paramètres des soins sont donnés, et avec tous les résultats, bons et moins bons. La quasi-totalité des utilisateurs (soignants) qui publient ne donnent leurs observations que sur les cas positifs et on n’a aucune idée des taux d’échec. Il reste difficile d’évaluer a priori les chances de succès d’un soin.
Et si on parlait des appareils qui fonctionnent de façon très ciblée, en mesurant le degré de cohérence / décohérence des fonctions vitales d’un patient ?
Lakhovsky disait que les cellules avaient une fréquence propre sur laquelle elles oscillaient et que, quand elles étaient décalées de cette fréquence, leur fonctionnement variait de légèrement à totalement défectueux. Dire que les cellules ont une fréquence propre signifie que tous les organites à l’intérieur de la cellule sont en cohérence de phase avec cette fréquence. Tous les systèmes intérieurs de la cellule fonctionnent en harmonie, en phase. C’est comme dans un orchestre, quand il y a un chef d’orchestre qui donne le rythme, et que tous les musiciens sont en cohérence de phase pour générer une harmonie. C’est un peu ce qui va se passer dans la cellule. Dans le cas contraire, la dysharmonie engendre un dysfonctionnement.
Comment recadrer des cellules en décohérence ? L’hypothèse est : lorsqu’une cellule n’est plus complètement en cohérence de phase, il va y avoir des organites dans la cellule qui ne vont pas tout à fait être en phase, sans être toutefois trop décalés sinon cela ne fonctionnerait plus du tout. On envoie une onde proche de la cohérence de phase de la cellule en question, ou un pulse qui est équivalent à plusieurs ondes, de phase et de fréquence très proches. Les cellules vont capter la fréquence qui leur est propre (comme une antenne) et vont se ré-harmoniser sur cette fréquence. De façon pratique, l’appareil envoie un pulse, puis est censé recapturer ce qui est réfléchi ou réémis par le corps. L’appareil considère que la fréquence absorbée est la fréquence de cohérence qu’il indiquera au thérapeute. Le soin consistera à envoyer cette fréquence qui a été mesurée sur la personne, ou à envoyer un pulse qui contient les fréquences possiblement valables pour ré-harmoniser le corps. Ce principe est théorique et hypothétique. La capacité des appareils à le faire demande une vérification.
Une dernière question importante : comment s’assurer qu’il n’y a pas d’effets délétères toxiques avec les techniques utilisées ?
En vérifiant les effets secondaires liés à la technique, si la personne se sent mal ou bien. C’est comme pour un médicament chimique, ce n’est pas parce qu’il s’agit d’ondes que c’est inoffensif. La toxicité des ondes provient d’un excès, ou de l’envoi de fréquences non adaptées qui entrave un processus biologique. Actuellement beaucoup de personnes deviennent électro-sensibles à cause du développement fabuleux de la téléphonie.
Dans le domaine des ondes radios et des micro-ondes en 1940, le bruit ambiant était d’un certain niveau. Actuellement le niveau est de l’ordre de 1021 fois plus élevé, le tout en 80 ans.
Il était seulement de 1018 plus élevé en 2016 et on a pris un facteur 1 000 à cause de la 4G et de la 5G. Où va-t-on s’arrêter ? Il est clair que nous nous adaptons mais avec des défaillances biologiques qu’on attribue à divers facteurs, en particulier au vieillissement de la population. Toutefois, on s’aperçoit que les jeunes (0-40 ans) actuellement sont bien plus malades que leurs parents, grands-parents et arrières grands-parents ne l’étaient au même âge.
Une interview réalisée par Ronald Guillaumont (rédacteur de Profession-Gendarme) et par Jean-Luc DUHAMEL (Juriste).
PG : Que pensez-vous du recours à la nouvelle technologie d’ARN messager répliquants auto-amplifiants afin d’immuniser les canards et les poules contre la grippe aviaire ?
J-P J : Il me semble important que nos représentants se saisissent du sujet en toute urgence au regard des enjeux de santé publique et environnementaux en interrogeant le premier ministre ou le ministre de l’agriculture, lors des questions parlementaires. En effet, le 27 août 2024, un « vaccin » à ARN messager auto répliquant (donc peut-être susceptible de transmettre la maladie, comme c’est la cas chez les humains pour le vaccin Covid), a fait l’objet d’une autorisation temporaire d’utilisation (ATU). Cette ATU concerne essentiellement les poules, le canard mulard, le canard de barbarie et le canard Pékin.
Ceci fait suite à un projet intitulé PREVENT (PRomoting and Enabling Vaccination Efficiently, Now and Tomorrow), un ambitieux projet qui vise à aider 150.000 petits producteurs de volailles en Afrique à devenir « plus productifs, plus efficaces et ainsi développer leurs entreprises« . Une initiative portée par Ceva Santé Animale (1er laboratoire vétérinaire français et 5e au monde) et GALVmed (organisation à but non lucratif) et soutenue par la fondation Bill & Melinda Gates.
Nombreux sont ceux qui se sont interrogés sur la question suivante : Et si l’ARN passait dans la chaine alimentaire, quel temps de cuisson serait-il nécessaire pour la détruire ? Pour répondre à cette question une méthode d’évolution in vitro a été utilisée, la méthode « SELEX » (Systematic Evolution of Ligands by Exponential enrichement), grâce à laquelle il a été constaté que les molécules d’ARN résistaient à 80° pendant 65 heures. Certes, on peut supposer qu’à 180° (température de cuisson d’une pizza) ce temps serait réduit à 24 heures.
Au moins, le côté positif est que l’on est sûr que le canard sera bien cuit…
Les questions qui se posent sont donc multiples et il est important de les poser de la façon suivante :
QUESTIONS PARLEMENTAIRES A POSER AU PROCHAIN PREMIER MINISTRE EN RAISON DE SON CARACTÈRE INTERMINISTERIEL :
L’ANSES a récemment délivré une ATU (Autorisation Temporaire d’Utilisation) au laboratoire CEVA Santé Animale pour son produit génique à ARN messager répliquant auto-amplifiants (CEVA RESPONS AI H5) censé être destiné à immuniser les canards et les poules contre la grippe (influenza) aviaire (ATU 90053).
Il est indiqué dans cet ATU que cette substance génique contient dans ses excipient(s) une quantité très importante de Squalène (max 375 micro-grammes pour 20 micro litres de substance génique).
Or, lors de la campagne de vaccination contre la grippe H1N1 DE 2009, le squalène a été mis en cause, car le produit utilisé à l’époque qui en contenait, a entraîné des centaines de cas de narcolepsie, et d’autres pathologies graves, ce qui a amené l’arrêt de la campagne de vaccination. L’inquiétude n’est donc pas théorique.
Le Squalène possède une résistance à la chaleur extrêmement élevée. Ce fait constitue une question préoccupante concernant la résistance des ARN messager répliquants auto-amplifiants à la cuisson et la possible contamination de la chaine alimentaire française et de l’environnement.
D’autres questions se posent concernant les autres excipients notamment les lipides cationiques mais aussi concernant la composition du diluant.
Questions 1:
Compte tenu du nombre colossal de déclarations d’effets indésirables à la pharmacovigilance, concernant la technologie ARN messagers, notamment lors de la vaccination contre le Covid 19, (près de 200.000, dont 50.000 graves, soit 1.200 fois plus de déclarations que pour le vaccin classique contre la grippe), alors que les gouvernements précédents ont scandaleusement nié cet état de fait, déclenchant l’indignation de centaines de médecins qui avaient, comme tout citoyen, accès aux chiffres officiels, pouvez vous nous confirmer que la PROGRAMMATION GÉNÉTIQUE des ARN messagers fournis par le laboratoire CEVA Santé Animale a été contrôlée par une autorité indépendante et dans l’affirmative , où peut-on trouver les résultats ?
Question 2 :
Pouvez vous nous confirmer que la composition du diluant fourni par le laboratoire CEVA Santé Animale ou autre fournisseur a été analysée / contrôlée par une autorité indépendante et, dans l’affirmative, laquelle, et où peut-on trouver les résultats ?
Question 3:
Afin d’écarter toute question de risque de contamination environnementale et alimentaire à travers l’ingestion d’ARN messager répliquants auto-amplifiants qui pourraient éventuellement se répliquer dans l’organisme du consommateur et causer ainsi une grave crise environnementale et de santé publique à l’avenir, Pouvez vous nous confirmer qu’un contrôle minutieux et systématique sur la présence résiduelle desdits ARN messagers répliquants auto-amplifiants est réalisé après abattage?
Question 4:
Pouvez vous nous confirmer que la délivrance de cette ATU répond notamment aux exigences prescrites par l’article 5 de la Charte de l’environnement de valeur constitutionnelle ainsi qu’à l’article 13 de la Convention d’Oviedo, de valeur supra-législative, portant sur le « but d’introduire une modification du génome de la descendance » ?
Question 5 :
Pouvez vous nous confirmer que des essais cliniques ont été effectués, et, dans l’affirmative , où peut-on trouver les résultats ?
Question 6 :
Au regard de l’article 7 de la Charte de l’environnement et de l’article 15 de la déclaration des Droits de l’Homme et du Citoyen, toutes deux de valeur constitutionnelle, pourquoi n’y a-t-il eu aucune transparence, ni aucune concertation sur cette nouvelle technologie utilisée sur les animaux ?
Question 7 :
Qui contrôlera le codage génétique des ARN messagers des animaux « vaccinés » au sein des pays membres du Mercosur ?
Question 8 :
Compte tenu des graves interrogations que suscite cette mesure, notamment concernant le risque de violation des art 5 et 7 de la Charte de l’environnement, et de l’art. 13 de la Convention d’Oviedo, dans le cas où les réponses aux questions précédentes seraient négatives, ne serait-il pas prudent, en vertu du principe de précaution, de décider d’un moratoire concernant cette vaccination, jusqu’à ce que toutes les réponses aient été apportées à ces questions?
La question est d’autant plus urgente que le Comité des médicaments à usage humain (CHMP) de l’Agence européenne des médicaments (EMA) a récemment recommandé l’autorisation d’un nouveau vaccin COVID-19 à ARNm auto-amplificateur appelé Kostaive. Ce vaccin, développé par Arcturus Therapeutics Europe B.V., utilise la technologie de l’ARNm auto-amplificateur pour produire une réponse immunitaire plus forte. La recommandation du CHMP intervient malgré certaines préoccupations en matière de sécurité, mais ils estiment que les avantages l’emportent sur les risques. (Ne joue-ton pas à la roulette russe ?)
Je rappelle que :
–L’article 15 de la Déclaration Des Droits de l’Homme et du Citoyen dispose :
« La société a le droit de demander compte à tout agent public de son administration. »
– L’article 5 de la Charte de l’Environnement dispose que :
« Lorsque la réalisation d’un dommage, bien qu’incertaine en l’état des connaissances scientifiques, pourrait affecter de manière grave et irréversible l’environnement, les autorités publiques veillent, par application du principe de précaution et dans leurs domaines d’attributions, à la mise en oeuvre de procédures d’évaluation des risques et à l’adoption de mesures provisoires et proportionnées afin de parer à la réalisation du dommage. »
– L’article 13 de la Convention d’OVIEDO stipule :
Interventions sur le génome humain
« Une intervention ayant pour objet de modifier le génome humain ne peut être entreprise quepour des raisons préventives, diagnostiques ou thérapeutiques et seulement si elle n’a paspour but d’introduire une modification dans le génome de la descendance. »
– L’article 7 de la Charte de l’Environnement dispose que :
« Toute personne a le droit, dans les conditions et les limites définies par la loi, d’accéder aux informations relatives à l’environnement détenues par les autorités publiques et de participer à l’élaboration des décisions publiques ayant une incidence sur l’environnement. »
Je rajouterai notamment les observations du Dr. Jean-Marc SABATIER, éminent spécialiste de ces questions, qui constate que les injections d’ARN messager, appelées faussement « VACCINS », ne sont pas des virus atténués afin de permettre au système immunitaire de reconnaitre le vrai virus en cas d’infection mais un CODAGE GÉNÉTIQUE qui pénètre les cellules et prend le contrôle de leur production, un peu comme un piratage informatique.
L’ARN messager injecté est une microscopique « bandelette biologique » sur laquelle il y a des cases (nucléotides). Chaque case contient une des lettres suivantes A, U, G, C. Les « bandelettes biologiques » (ARN messagers) injectées lors du COVID-19 contenaient environ 4300 nucléotides, soit 4300 lettres.
Comme en informatique, la composition du codage (A, G, A, C, U, U etc pour les 4300 cases ou C, U, U, A, G, A, etc ) détermine la ou les protéines que la cellule doit alors produire. La protéine qui devrait être produite est une des protéines fixées sur l’enveloppe du virus permettant ainsi au système immunitaire de reconnaître ce virus en cas d’infection.
A, G, A, C, U, U etc (environ 4300 lettres) vont produire la protéine X
C, U, U, A, G, A etc (environ 4300 lettres) vont produire la protéine Y
Ces 4300 lettres de la « bandelette biologique » que le ribosome (tête de lecture) de la cellule décode) forment le message de l’ARNm.
Ces ARN messagers sont transportés par le sang et pénètrent notamment dans les cellules des organes traversés (cœur, cerveau, reins, poumons, foie, organes reproducteurs etc) et prennent le contrôle de la production de protéine à l’intérieur de chaque cellule.
Pour le COVID-19, les quantités « astronomiques » d’ARN messagers injectés étaient approximativement de 14 000 milliards par injection pour le Pfizer-BioNtech et 47 000 milliards par injection pour le Moderna, causant les effets secondaires graves qu’on connait aujourd’hui.
De surcroît, une étude du 6 décembre 2023 parue dans la revue NATURE a démontré que le codage génétique des « vaccins » COVID-19 a été manipulé (neutralisation du « U », décalant ainsi toute la chaîne des 4300 lettres définissant la protéine à produire) et produisait donc une ou plusieurs autres protéines que la SPIKE qui constitue la signature du VIRUS du COVID-19, le SARS-Cov-2. Nous ne savons toujours pas aujourd’hui pourquoi les fabricants ont voulu produire une ou plusieurs autres protéines que la SPIKE avec cette manipulation du codage génétique.
Quelles étaient la ou les protéines fantômes produites ?
Quel était le but des fabricants de ces injections ?
Quels sont leurs effets délétères ou mortels et est-ce que ces manipulations génétiques des ARN messagers concernaient tous les « VACCINS » ?
Nous ne savons toujours pas aujourd’hui pourquoi les autorités de santé n’ont pas fait contrôler le codage génétique de ces injections avant de décider de faire injecter les français.
Cette technologie a aujourd’hui évolué. D’ARN messager simple, ils sont passés à la nouvelle technologie des ARN messagers AUTO-RÉPLIQUANTS / AUTO-AMPLIFIANTS.
Sommairement, un ARN messager AUTO-RÉPLIQUANT AUTO-AMPLIFIANT prenant le contrôle de la production de chacune de nos cellules est désormais capable de se répliquer et de se dupliquer tout seul !
Combien d’ARN messagers AUTO-RÉPLIQUANTS / AUTO-AMPLIFIANTS circuleront alors dans notre sang au bout d’une semaine à partir de cet ARN messager de départ ? 100, 1000, 1 000 000, plus ? Aucune information sur ce sujet ne nous est donnée de la part des autorités de santé. Aucune transparence n’est faite sur cette question cruciale, notamment au regard de ses conséquences potentielles sur la santé, la contagiosité et l’environnement.
Un autre point inquiétant vient de ce que ces ARN messagers AUTO-RÉPLIQUANTS / AUTO-AMPLIFIANTS contiennent de deux à cinq fois plus de cases (nucléotides, donc de lettres), entre 8600 et 21500 cases (c’est comme quand on augmente la taille du disque dur d’un ordinateur).
Cette augmentation de capacité de codage donne la possibilité aux fabricants de ces injections de faire produire par les cellules humaines ou animales plusieurs types de protéines par ARN messager (qui va se répliquer indéfiniment ?).
Sans aborder les effets secondaires potentiellement délétères voire mortels, par effets directs ou par contamination par la nourriture ou l’ingestion ou encore l’inhalation de ces nouveaux ARN messagers AUTO-RÉPLIQUANTS / AUTO-AMPLIFIANTS, aucun contrôle n’est en vue au regard de la programmation génétique des ARN messagers par une autorité indépendante.
C’est donc avec ces nouveaux ARN messagers AUTO-RÉPLIQUANTS / AUTO-AMPLIFIANTS qu’ils ont commencé depuis quelques mois à injecter les animaux destinés à l’alimentation des français !
Etant donné l’ensemble des risques avérés extrêmement inquiétant provenant du monde entier sur ce type d’injections ARN messagers simples ou AUTO-RÉPLIQUANTS / AUTO-AMPLIFIANTS, et au regard des principes de précaution et de transparence a valeur constitutionnelle, ainsi que de la convention d’OVIEDO ratifiée par la France, il est urgent que les représentants du Peuple français contraignent les autorités sanitaires françaises à l’adoption immédiate d’ un MORATOIRE portant sur l’ensemble du territoire français.
Une série d’études récentes alerte sur le lien entre les vaccins COVID-19 et l’apparition de troubles neurologiques ou psychiatriques peu de temps après une vaccination. Les mécanismes susceptibles d’expliquer ces atteintes ne sont pas formellement élucidées, mais les rapports d’évaluation de Pfizer et de Moderna indiquaient tous les deux que le vaccin pénètre dans le cerveau.
En octobre 2023, une étude de cohorte italienne[1] a révélé qu’une personne vaccinée sur trois (31,2 %) avait subi des complications neurologiques, la plupart du temps bénignes et transitoires, au cours des six mois suivant la vaccination. On dispose aujourd’hui d’une série de nouvelles études, qui alertent sur le risque de complications neurologiques graves associées aux vaccins anti-COVID.
Dans cet article, nous recensons les dernières études concernant l’impact des injections sur le cerveau, ainsi que certaines publications plus anciennes dont les résultats sont connus depuis plus de deux ans. À ce jour, la base React 19 en recense 625.
Nouvelles études parues en 2023-2024
Le Journal de l’Association médicale canadiennealertait en 2022 sur un nombre croissant de patients présentent des troubles neurologiques fonctionnels (TNF) après la vaccination contre le SRAS-CoV-2[2], affectant la motricité, les fonctions sensitives ou sensorielles. Les dernières études confirment que les injections peuvent initier ou exacerber des processus auto-immuns, provoquer des altérations des systèmes de contrôle inflammatoires ou des conditions pro-inflammatoires, et induire un large spectre de symptômes neurologiques ou psychiatriques.
Résultats : La vaccination était impliquée dans 26,3 % des NMOSD, 52,4 % des AE et 85,7 % des MOGAD recensés dans la base du VAERS depuis sa création (1990), mais la plupart de ces cas sont survenus secondairement au vaccin contre le SRAS-CoV-2.
Épilepsie
Une méta-analyse italienne (Dasara et al.)[4] publiée en juillet 2024 a recensé l’ensemble des études concernant l’apparition d’un statut de mal épileptique (SE) chez les personnes vaccinées contre le COVID-19. Les auteurs présentent deux cas d’état de SE réfractaire survenus après une injection Pfizer.
Résultats : L’un des patients a nécessité 150 jours d’hospitalisation, le second est décédé de complications infectieuses après 90 jours d’hospitalisation. Sept autres cas ont été recensés dans la littérature, 4 après une injection Moderna, 2 après une injection Pfizer, 1 après une injection AstraZeneca. Le délai moyen d’apparition des symptômes était de 4,5 jours. Les auteurs concluent que l’EDM est une complication rare mais sévère de la vaccination anti-COVID.
Maladie d’Alzheimer
Une étude sud-coréenne (Roh et al.)[5] publiée en mai 2024 a analysé l’évolution de l’état neurologique des personnes vaccinées (519 330) vs non-vaccinées (38 687) sur une période de trois mois.
Résultats : L’incidence de la maladie d’Alzheimer et des démences légères a augmenté de façon significative chez les personnes vaccinées, en particulier celles ayant reçu des vaccins à ARNm. Trois mois après une injection ARNm, la hausse est de :
Une étude sud-coréenne (Kim et al.)[6] publiée en juin 2024 a évalué l’impact de la vaccination anti-COVID sur 10 troubles psychiatriques. La cohorte représente 50 % de la population de Séoul (4 348 412 personnes).
Résultats : L’incidence cumulée de dépression, d’anxiété, de troubles dissociatifs, liés au stress et somatoformes, de troubles du sommeil et de troubles sexuels était plus élevée dans le groupe vacciné, trois mois après la vaccination.
Dépression : + 68 %
Anxiété, dissociative, stress, troubles du sommeil : + 44 %
Troubles du sommeil : + 93 %
Troubles sexuels : 556 %
Psychoses
Une revue systématique lettonienne (Lazareva et al.)[7] publiée en avril 2024 a recensé l’ensemble des rapports de cas sur l’apparition d’une psychose suite à la vaccination contre le COVID-19.
Résultats : Les femmes étaient impliquées dans 54 % des cas, avec un âge moyen de 34 ans et un délai moyen d’apparition des symptômes de 6 jours. Le délai moyen d’apparition des symptômes était de 6 jours, avec une durée moyenne de 52 jours, mais 50 % des patients n’ont obtenu un rétablissement complet.
Maladies à prions
Une étude indienne (Begum et al.)[8] publiée en juillet 2024 relate un cas d’apparition tardive de la maladie de Creutzfeldt-Jakob chez un homme de 83 ans à la suite d’une infection COVID-19. Le patient a développé les premiers symptômes un an après l’infection, il est décédé sept mois plus tard d’un choc septique et d’une défaillance respiratoire.
Résultats : Le mécanisme n’est pas discuté dans l’étude, mais selon le chercheur Walter Chesnut[9], ce cas confirme que la protéine Spike du SARS-CoV-2, peut induire une maladie à prions. Il suggère plus spécifiquement que les protéines contaminées par la protéine Spike deviennent des prions.
Nous envisageons presque certainement une toute nouvelle forme de maladie à prions. Une maladie neurodégénérative traditionnelle qui ne se limite pas à la maladie neurodégénérative. Cette nouvelle version attaque plusieurs protéines, plusieurs organes. Nous avons besoin de biopsies et d’autopsies pour déterminer dans quelle mesure, le cas échéant, cela se produit. Ma crainte est qu’il y ait une vague silencieuse de construction de la maladie à prions qui nous attrapera (pour certains) par surprise.Chesnut W. The Spike protein and systemic prion disease: RBD Prion-Like domain/mitochondrial interactions induce a novel form. 2024 Jul 22. https://wmcresearch.substack.com/p/the-spike-protein-and-systemic-prion.
Le statut vaccinal du patient n’est pas évoqué, contrairement à celui dont le cas a été relaté dans une étude italienne en mars 2024[10]. L’étude décrit le cas d’une patiente de 51 ans ayant développé une forme génétique de la maladie de Creutzfeldt-Jakob (MCJ) après une infection COVID. La patiente avait contracté le COVID deux mois auparavant et avait reçu une dose de vaccin Pfizer six mois plus tôt. Elle est décédée deux mois plus tard.
Retard de développement et autisme*
Une étude turque (Erdogan et al.)[11] publiée en janvier 2024 a évalué les implications potentielles des vaccins ARNm (en l’occurrence Pfizer) chez des femelles rats enceinte et leur progéniture sur trois critères : les comportements de type autiste, le développement neuronal et les performances motrices.
Résultats : Trois résultats alarmants se dégagent de l’étude.
Les rats mâles ont présenté des comportements de type autisme prononcé, caractérisés par une réduction marquée de l’interaction sociale et des schémas de comportement répétitifs.
Il y a eu une diminution substantielle du nombre neuronal dans les régions critiques du cerveau, indiquant une neurodégénérescence potentielle ou un neurodéveloppement altéré.
Les rats mâles ont démontré une altération des performances motrices, mises en évidence par une réduction de la coordination et de l’agilité.
Les auteurs concluent :
Nos résultats révèlent que le vaccin ARNm BNT162b2 (Pfizer) modifie significativement l’expression génique du WNT et les taux de BDNF chez les rats mâles et femelles, avec des effets particulièrement prononcés observés chez les mâles. Ces résultats suggèrent un impact profond du vaccin sur les principales voies du développement neurologique. Ils soulignent l’importance de la poursuite de la recherche dans ce domaine pour garantir la sécurité et le bien-être de toutes les personnes, en particulier celles qui sont enceintes et leur progéniture.
Caillots cérébraux*
Une étude américaine (Ryu et al.)[12] publiée en août 2024 a étudié les mécanismes sous-jacents aux thromboses et aux symptômes neurologiques mettant en jeu le pronostic vital chez les patients atteints de COVID longs.
Résultats : La fibrine, composante clé des caillots sanguins, pulmonaires ou cérébraux, se lie à la protéine Spike du SRAS-CoV-2, formant des caillots sanguins pro-inflammatoires qui entraînent une thromboinflammation systémique, une neuropathologie et une perte neuronale. Ce mécanisme est impliqué dans les COVID longs mais également les cancers, par destruction des cellules NK (natural killers). Les auteurs ne pensent pas que cette découverte remette en cause la sécurité des vaccins ARNm qui produiraient selon eux « de petites quantités de protéine Spike qui s’accumulent localement et dans les ganglions drainants, où la réponse immunitaire est initiée et la protéine est éliminée ». Cet optimisme est contreduit par les études de biodistribution et par la découverte de quantités astronomiques de quantités Spike chez de nombreux vaccinés, à distance de plusieurs mois d’une injection.
NB. Le manuscrit a été reçu le 13 février 2023 par l’éditeur. Pourquoi une telle rétention ?
Décès dus à des maladies neurologiques chez les jeunes adultes
Une étude portugaise (Alegria et al.)[13] publiée en preprint en juin 2024 a analysé l’évolution des décès par tranche d’âge, recensés par le CDC entre 2000 et 2023 et impliquant une maladie neurologique.
Résultats : Les décès excessifs impliquant une maladie neurologique se sont produits pour la plupart des groupes d’âge. L’effet le plus fort a été observé chez les 15-44 ans :
Les chercheurs précisent : « Les résultats indiquent qu’à partir de 2020, un nouveau phénomène conduisant à une augmentation des décès neurologiques semble être particulièrement présent chez les personnes âgées de 15 à 44 ans. »
Effets secondaires neurologiques déjà documentés
Les études présentées ici ne représentent qu’un petit échantillon des publications disponibles aujourd’hui.
Ce qu’on savait en octobre 2021 lorsque l’obligation vaccinale est entrée en vigueur
Une revue de la littérature indienne parue en octobre 2021 (Garg et al.)[14] a recensé 147 études.
Résultats : Les complications neurologiques rapportées après la vaccination anti-COVID augmentent de manière continue depuis le déploiement des injections. Les plus « dévastatrices » sont la thrombose veineuse cérébrale et les sinus veineux cérébraux chez les femmes en âge de procréer.
Autres complications neurologiques majeures :
la paralysie de Bell principalement après les vaccins ARNm ;
la myélorite transverse aiguë ;
l’encéphalomyélite disséminée aiguë ;
la polyneuropathie démyélicanisante aiguë ;
la réactivation du zona de l’herpès, fréquente après un vaccin ARNm.
Ce qu’on savait en décembre 2022, lorsque la HAS a recommandé la vaccination à partir de 6 mois[15]
Une revue de la littérature conduite par des chercheurs américains et iraniens (Mohseni Afshar et al.)[16] recensait 249 études en novembre 2022. Les événements indésirables (EI) neurologiques susceptibles d’être exacerbés ou induits par la vaccination anti-COVID incluent des maladies neuro-immunologiques telles que la myasthénie grave (MG) et le syndrome de Guillain-Barré (SGB), les crises d’épilepsie, la réactivation du virus varicelle-zona, les accidents vasculaires cérébraux, la paralysie de Bell, la myélite transverse (MT) et l’encéphalomyélite aiguë disséminée (EADM). Les auteurs mettent en garde :
Tout symptôme neurologique après la vaccination contre la COVID-19 peut être potentiellement critique et doit être évalué avec prudence.
Une seconde revue de la littérature réalisée par deux chercheurs indiens (Chatterjee et al.)[17]recense les complications neurologiques documentées à l’issue de 18 mois de vaccination en distinguant les atteintes du système nerveux central (SNC) et du système nerveux périphérique (SNP). Les auteurs précisent :
La précipitation de nouvelles lésions cérébrales démyélinisantes […] et l’aggravation de troubles neurologiques préexistants (comme l’épilepsie, la sclérose en plaques) sont très préoccupantes, bien que aucune preuve concluante impliquant les vaccins n’est disponible dès à présent. […] La sécurité, au moins des vaccins à ARNm, est toujours discutée pour les patients atteints de sclérose en plaques rémittente active, NMOSD et MOGAD. Il est recommandé aux patients présentant des symptômes neurologiques aigus de consulter un médecin, en particulier avant la vaccination.
Commentaire : Selon le Pr Josef Finsterer[18], cette étude omet plusieurs événements graves. La figure ci-dessous est issue de l’étude de Chatterjee et al. complétée par celle de Finsterer(**).
Une revue de la littérature iranienne (Hosseini et al.)[19] publiée en février 2023 établit le profl neurologique des vaccins, sur la base d’un recensement de 147 études.
Les complications le plus courantes sont les troubles cérébrovasculaires et les troubles démyélinisants, notamment la myélite transverse, la sclérose en plaques (SEP) inaugurale et la neuromyélite optique. Les auteurs précisent :
Les vaccins anti-COVID peuvent parfois avoir des effets secondaires graves sur le système nerveux, y compris le cerveau, la moelle épinière, les nerfs crâniens et les nerfs périphériques. Ces effets sont souvent aigus et transitoires, mais ils peuvent être sévères et même fatals dans quelques cas.
La maladie de Creutzfeldt-Jakob doit-elle être ajoutée à cette liste ?
Le tout premier article du Point critique, paru en février 2022, concernait de Mauricette Doyer, décédée quelques mois plus tard d’une maladie de Creutzfeldt-Jakob (MCJ) qu’elle avait déclarée quinze jours après sa 2e dose de vaccin Pfizer. D’autres cas similaires ont été décrits depuis après une vaccination anti-COVID[20]. Nous posions cette question, en nous basant sur un faisceau d’études et sur l’émergence d’un signal au Nouveau-Brunswick (Canada) où un cluster de maladies neurodégénératives de type MCJ avait été signalé : Maladie de Creutzfeldt-Jakob postvaccinale, une épidémie dans l’épidémie ?
Le lien entre la maladie de Maurciette et la vaccination a été jugé plausible par la justice mais les autorités sanitaires, que ce soit en France et au Canada, ne sont pas curieuses de savoir si cette maladie à déclaration obligatoire pourrait avoir été inoculée à des millions de citoyens : des échanges de mails montrent que l’enquête canadienne a été étouffée, et Olivier Véran n’a jamais répondu à l’alerte du Pr Montagnier qui aurait dû pourtant déclencher une suspension a minima temporaire de la vaccination pour s’assurer qu’elle ne mettait pas en danger la population.
Les preuves d’un lien possible entre la maladie de Creutzfeldt-Jakob et les injections anti-COVID se sont multipliées depuis deux ans, mais l’alerte a été donnée dès 2021 par plusieurs scientifiques[21],[22],[23],[24] suite à la découverte de séquences de type « prions » dans le virus du SARS-CoV-2 et la confirmation que la protéine Spike peut franchir la barrière hématoencéphalique et pénétrer dans le cerveau[25],[26],[27]. D’autres mécanismes susceptibles d’induire une MCJ ont été découverts en 2021-2023[28][29],[30],[31],[32],[33] : induction du mauvais repliement de nombreuses protéines, formation d’agrégats amyloïdes, accumulation de la protéine Spike dans la rate…
Ces données ont été consolidées en 2023 dans une revue de la littérature[34], qui analyse le rôle potentiel de la protéine Spike dans les maladies neurodégénératives, dont la MCJ. Les inquiétudes suscitées par cette étude ont été renforcées par la publication d’une étude[35] qui démontre que la technologie ARNm utilisée dans les injections génère des erreurs de traduction (décalage du cadre ribosomique), se traduisant par la production de protéines errantes ou inconnues autre que la protéine Spike.
De manière plus anecdotique, des chercheurs ont lancé un appel à témoins concernant la survenue de symptômes neurologiques débilitants chez des personnes vaccinées. Ils ont recueilli 60 cas sur un échantillon de 15 000 visites, ce qui représente une fréquence de 1 cas sur 66, alors que la maladie est réputée toucher touche 1 personne sur 1000000.
Selon le Dr Chesnut, on peut également s’inquiéter de l’affinité entre de nombreuses complications des injections avec la maladie à prions (cardiomyopathie, diabète de type 2, caillots…) et, inversement, de l’implication potentielle des prions dans les complications neurologiques des COVID longs. Il cite notamment une étude tchèque de 2023[36] dont la conclusion est particulièrement inquiétante :
Ensemble, nous supposons, en partie, le COVID prolongé peut impliquer l’induction d’une émergence spontanée du prion, en particulier chez les individus susceptibles d’être à son origine, ce qui peut expliquer certaines de ses manesfestestions virales après une infection virale aiguë.
Conclusion
À ce jour, en France, les seuls signaux de sécurité confirmés des vaccins ARNm COVID-19 sont l’hypertension artérielle, la myocardite/péricardite et les saignements menstruels importants (Pfizer et Moderna) ainsi que l’apparition d’un érythème polymorphe et d’une réaction au site d’injection (Moderna). Trois complications neurologiques sont toujours sous surveillance pour le vaccin Pfizer (thrombose veineuse cérébrale, méningo-encéphalite zostérienne, syndrome de Guillain-Barré), deux pour le vaccin Moderna (perte de connaissance et syndrome de Parsonage Turner), mais l’Agence nationale de sécurité du médicament et des produits de santé (ANSM), en charge de la pharmacovigilance, a cessé de publier les données depuis un. Son dernier rapport remonte au 28 août 2023, on suppose donc qu’elle n’a pas pu établir de lien avec le vaccin.
Cette mini-revue de la littérature suggère pourtant que les preuves sont pléthoriques. On dispose aujourd’hui d’une série d’études démontrant que le vaccin traverse la barrière hématoencéphalique, ce qui peut expliquer un grand nombre des complications neurologiques observées, mais l’Agence européenne des médicaments le savait au moment où les vaccins Pfizer et Moderna. Ses rapports d’évaluation[37],[38]. le mentionnent explicitement :
Que faut-il en conclure ? Ceux qui n’ont pas encore trouvé la réponse à cette question seraient avisés de se dépêcher. La prochaine pandémie est déjà là, les vaccins aussi, mais cette fois les choses sont plus claires : les fabricants ont déjà admis que l’efficacité n’avait pas été évaluée chez l’homme et on connaît déjà le nom de certains effets secondaires graves.
* Article mis à jour le 31 août 2024.
Références
[1] Salsone M, Signorelli C, Oldani A, Alberti VF, Castronovo V, Mazzitelli S, et al. NEURO-COVAX: An Italian population-based study of neurological complications after COVID-19 vaccinations. Vaccines (Basel). 2023 Oct 21;11(10):1621. https://doi.org/10.3390/vaccines11101621.
[2] Zhu A, Burke MJ.Functional neurologic disorder associated with SARS-CoV-2 vaccination. CMAJ. 2022 Aug 15;194(31):E1086-E1088. https://doi.org/10.1503/cmaj.220039.
[3] Garcia-Dominguez MA, Kaur T, Kipkorir V, Cheruto DC, Clinton R, Udochukwu A. Autoimmune encephalitis, neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein antibody-associated disease: Analysis of the Vaccine Adverse Event Reporting System (VAERS). MedRxiv (preprint). 2024 Jul 19. https://doi.org/10.1101/2024.07.15.24310444.
[4] Dasara M, Dono F, Evangelista G, Quintieri P, Liviello D, Cipollone S, et al. Status epilepticus as a complication of SARS-CoV-2 vaccination: Two case reports and systematic review with individual patients’ data analysis. Seizure. 2024 Jul 18;121:8-16. https://doi.org/10.1016/j.seizure.2024.07.013.
[5] Roh JH, Jung I, Suh Y, Kim MH. A potential association between COVID-19 vaccination and development of alzheimer’s disease. QJM. 2024 May 28:hcae103. https://doi.org/10.1093/qjmed/hcae103.
[6] Kim HJ, Kim MH, Choi MG, Chun EM. Psychiatric adverse events following COVID-19 vaccination: a population-based cohort study in Seoul, South Korea. Mol Psychiatry. 2024 Jun 4. https://doi.org/10.1038/s41380-024-02627-0.
[7] Lazareva M, Renemane L, Vrublevska J, Rancans E. New-onset psychosis following COVID-19 vaccination: a systematic review. Front Psychiatry. 2024 Apr 12;15:1360338. https://doi.org/10.3389/fpsyt.2024.1360338.
[8] Begum A, Boppana MS, Rajavasireddy NS, Tummala N, Solís Mayorga MB. Unusually late onset of Creutzfeldt-Jakob disease following COVID-19 infection in India: A case report. Cureus. 2024 Jul 2;16(7):e63702. https://doi.org/10.7759/cureus.63702.
[10] Colaizzo E, Prosperini L, Petrucci A, Perna A. Creutzfeldt–Jakob Disease Associated with E200K Mutation and SARS-CoV-2 Infection: Pure Coincidence or Neurodegenerative Acceleration? Clin. Transl. Neurosci. 2024;8(2):16. https://doi.org/10.3390/ctn8020016.
[11] Erdogan MA, Gurbuz O, Bozkurt MF, Erbas O. Prenatal exposure to COVID-19 mRNA vaccine BNT162b2 induces autism-like behaviors in male neonatal rats: Insights into WNT and BDNF signaling perturbations. Neurochem Res. 2024 Apr;49(4):1034-48. https://doi.org/10.1007/s11064-023-04089-2.
[12] Ryu JK, Yang Z, Montano M, Sozmen EG, Dixit K, Suryawanshi RK, et al. Fibrin drives thromboinflammation and neuropathology in COVID-19. Nature. 2024 Aug 28. https://doi.org/10.1038/s41586-024-07873-4.
[13] Alegria C, Nunes Y. Trends in death rates from Neurological diseases in the US for all ages and detailed analysis for 15-44. ResearchGate (preprint). June 2024. https://doi.org/10.13140/RG.2.2.30832.67845.
[14] Garg RK, Paliwal VK. Spectrum of neurological complications following COVID-19 vaccination. Neurol Sci. 2022 Jan;43(1):3-40. https://doi.org/10.1007/s10072-021-05662-9. Publiée en ligne en octobre 2021.
[16] Mohseni Afshar Z, Sharma A, Babazadeh A, Alizadeh-Khatir A, Sio TT, Taghizadeh Moghadam MA, et al. A review of the potential neurological adverse events of COVID-19 vaccines. Acta Neurol Belg. 2023 Feb;123(1):9-44. https://doi.org/10.1007/s13760-022-02137-2. Publiée en ligne en novembre 2022.
[18] Finsterer J. The number of neurological side effects of SARS-CoV-2 vaccinations is increasing. Neurol India. 2023 Jul-Aug;71(4):790-791. https://doi.org/10.4103/0028-3886.383838.
[20] Folds AJ, Ullrich MB, Htoo S, Chukus A. Sporadic Creutzfeldt-Jakob disease after receiving the second dose of Pfizer-BioNTech COVID-19 vaccine dose of Pfizer-BioNTech COVID-19 vaccine. Int Med. 2022;420. https://scholarlycommons.hcahealthcare.com/internal-medicine/420.
[23] Classen JB. Review of COVID-19 vaccines and the risk of chronic adverse events including neurological degeneration. J Med Clin Res Rev. 2021; 5(3): 1-7. https://doi.org/10.33425/2639-944X.1202.
[25] Tetz G, Tetz V. Prion-like Domains in spike protein of SARS-CoV-2 differ across its variants and enable changes in affinity to ACE2. Microorganisms. 2022 Jan 25;10(2):280. https://doi.org/10.3390/microorganisms10020280.
[26] Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, Bullock TA, McGary HM, Khan JA, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier. Neurobiol Dis. 2020 Dec;146:105131. https://doi.org/10.1016/j.nbd.2020.105131.
[28] Baazaoui N, Iqbal K. COVID-19 and Neurodegenerative Diseases: Prion-Like Spread and Long-Term Consequences. J Alzheimers Dis. 2022;88(2):399-416. https://doi.org/10.3233/JAD-220105.
[29] Idress D, Kumar V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration. Biochem Biophys Res Commun. 2021; 554: 94-8. https://doi.org/10.1016/j.bbrc.2021.03.100.
[30] Parry PI, Lefringhausen A, Turni C, Neil CJ, Cosford R, Hudson NJ, et alJ. ‘Spikeopathy’: COVID-19 Spike protein is pathogenic, from both virus and vaccine mRNA. Biomedicines. 2023 Aug 17;11(8):2287. https://doi.org/10.3390/biomedicines11082287. Inclut 253 références.
[31] Petrlova J, Samsudin F, Bond PJ, Schmidtchen A. SARS‐CoV‐2 spike protein aggregation is triggered by bacterial lipopolysaccharide. FEBS Lett. 2022 Oct;596(19):2566-2575. https://doi.org/10.1002/1873-3468.14490.
[32] Aksenova AY, Likhachev IV, Grishin SY, Galzitskaya OV. The increased amyloidogenicity of Spike RBD and pH-dependent binding to ACE2 may contribute to the transmissibility and pathogenic properties of SARS-CoV-2 Omicron as suggested by in silico study. Int J Mol Sci. 2022 Nov 4;23(21):13502. https://doi.org/10.3390/ijms232113502.
[33] Liu S, Hossinger A, Heumüller SE, Hornberger A, Buravlova O, Konstantoulea K, et al. Highly efficient intercellular spreading of protein misfolding mediated by viral ligand-receptor interactions. Nat Commun. 2021 Oct 19;12(1):5739. https://doi.org/10.1038/s41467-021-25855-2.
[34] Seneff S, Kyriakopoulos AM, Nigh G, McCullough PA. A potential role of the Spike protein in neurodegenerative diseases: A narrative review. Cureus. 2023 Feb 11;15(2):e34872. https://doi.org/10.7759/cureus.34872. Inclut 134 références.
[35] Mulroney TE, Pöyry T, Yam-Puc JC, Rust M, Harvey RF, Kalmar L, et al. N1-methylpseudouridylation of mRNA causes +1 ribo-somal frameshifting. Nature. 2023 Dec 6. https://doi.org/10.1038/s41586-023-06800-3.
[36] Stefano GB, Büttiker P, Weissenberger S, Anders M, Raboch J, Ptacek R, et al. Potential prion involvement in long COVID-19 neuropathology, including behavior. Cell Mol Neurobiol. 2023 Aug;43(6):2621-2626. https://doi.org/10.1007/s10571-023-01342-8.
« Mes collègues signalent une augmentation des cancers du sang, des leucémies, des rechutes, ainsi que des cancers du côlon et du sein. »
Pendant de nombreuses années, Singapour a prospéré sous la direction exceptionnelle de notre père fondateur, le Premier ministre Lee Kuan Yew, et de son équipe visionnaire. Je faisais partie de ceux qui sont retournés à Singapour en mars 1975, contribuant ainsi à sa gouvernance draconienne mais bienveillante.
Cependant, nous constatons aujourd’hui des tensions alarmantes sur notre système de santé.
En tant que consultant de l’OMS, j’ai supervisé la fabrication et l’utilisation de nouveaux vaccins contre l’hépatite B à Singapour. Ces technologies d’ARNm ont été initialement utilisées pour des thérapies ciblées contre le cancer et n’ont pas été conçues à l’origine pour une vaccination de masse.
Le vaccin à ARNm de Pfizer provient de la partie spiculaire du virus SARS-CoV-2, qui possède un brevet de l’USCDC remontant au 2 mai 2004. L’ajout d’une glycoprotéine du VIH a été controversée, soulevant des soupçons quant à ses implications.
En 2021, la vaccination obligatoire avec le vaccin Pfizer a commencé et tous les employés ont dû s’y conformer sous peine de licenciement. Depuis lors, j’ai tragiquement perdu 34 membres de mon personnel médical supérieur, dont ma tante et mon frère estimés. Ma tante a été infectée par un membre du personnel qui avait été vacciné avec Pfizer, ce qui a entraîné sa mort. Mon frère, âgé de 86 ans, qui a reçu le vaccin Moderna en 2021 suivi de deux doses de Pfizer, a succombé à la COVID-19. Durant cette période, le variant Delta, une souche à pointes ciblées, était répandu.
En 2023, Singapour avait atteint un taux de vaccination de 95 % avec Pfizer. Cependant, cela a coïncidé avec une tendance inquiétante au déclin de la population, caractérisée par une augmentation des taux de mortalité et une diminution des taux de natalité au sein de la population hautement vaccinée.
La perte de personnel de santé de première ligne en raison des infections au COVID-19 dans les hôpitaux publics et à l’aéroport de Changi a mis à rude épreuve l’infrastructure de santé. Cela a conduit à des services d’urgence et à des cliniques de médecins généralistes débordés. Pour combler le déficit, 400 médecins ont dû être importés. Malgré des efforts de vaccination généralisés dans les zones de logement, les inquiétudes concernant les vaccins à ARNm ont persisté. Les médecins qui ont exprimé ces inquiétudes ont été suspendus pour avoir prétendument diffusé de fausses informations.
Les décès ont-ils cessé ? Malheureusement non. Malgré la suppression de la loi sur les coroners en mai 2023[ source ], qui a interrompu les enquêtes sur les décès liés aux médicaments , les taux de mortalité annuels et les cas de cancer ont continué d’augmenter.
Mes collègues signalent une augmentation des cancers du sang, des leucémies, des rechutes, ainsi que des cancers du côlon et du sein.
Des collègues seniors prennent leur retraite ou réduisent leur activité pour répondre aux besoins des patients existants, tandis que de nombreux médecins quittent le secteur public. Le secteur privé compte désormais de plus en plus sur des médecins plus jeunes pour les remplacer.
Assistons-nous à l’effondrement de notre système de santé en raison de la perte de personnel due au COVID-19 et des inquiétudes concernant la sécurité des vaccins à ARNm ? Cette question reste cruciale pour la future politique de santé et la résilience du système de Singapour.
– Professeur Gabriel Oon, 8 novembre 2024
Le professeur Gabriel Oon , est connu comme l’oncologue le plus expérimenté de Singapour. Son travail a non seulement modifié le traitement du cancer à Singapour, mais a également influencé les pratiques mondiales. Le professeur Gabriel a joué un rôle clé dans la lutte contre le cancer du foie à Singapour lorsqu’il s’agissait d’un problème de santé majeur. En tant que président fondateur de la Société d’oncologie de Singapour (SSO ) et de la Société d’immunologie et de rhumatologie de Singapour (SSIR), ainsi que secrétaire général de l’Association Asie-Pacifique pour l’étude du foie (APASL) , le professeur Oon a amélioré la médecine collaboration et pratiques à Singapour. Avant que quiconque dans la communauté médicale « établie » ne qualifie le professeur Gabriel Oon d’« antivaxxer », il est important de souligner qu’il a joué un rôle clé dans le développement du vaccin contre l’hépatite B. Son travail de pionnier a joué un rôle déterminant dans la lutte contre l’hépatite B et le cancer du foie. Dans les années 1970, l’hépatite B était très répandue à Singapour, avec un taux de 9,1 % parmi les donneurs de sang volontaires en 1975 . Son travail avec l’Organisation mondiale de la santé a contribué à faire de Singapour le premier pays à déployer un programme national de vaccination contre l’hépatite B , entraînant une baisse significative des taux de cancer du foie et des cas d’hépatite B. Mondialement reconnu, le professeur Oon a collaboré avec le professeur Baruch Blumberg, lauréat du prix Nobel , découvreur de l’hépatite B, pour améliorer nos connaissances sur les infections par l’hépatite et le cancer du foie.
L’action des vaccins à base d’ARNm nécessite l’expression de l’antigène dans des cellules ciblées par des complexes lipidiques nanoparticules-ARNm. Lorsque l’antigène vaccinal n’est pas entièrement retenu par les cellules productrices, sa diffusion locale et systémique peut avoir des conséquences dépendant à la fois des niveaux d’expression de l’antigène et de son activité biologique. Une particularité des vaccins COVID-19 à base d’ARNm réside dans les quantités extraordinairement élevées d’antigène Spike exprimées par les cellules cibles. De plus, le vaccin Spike peut être excrété et se lier aux récepteurs cellulaires ACE-2, induisant ainsi des réponses d’importance pathogénétique, notamment la libération de facteurs solubles qui, à leur tour, peuvent déréguler des processus immunologiques clés. De plus, les réponses immunitaires circulatoires déclenchées par le vaccin Spike sont assez puissantes et peuvent conduire à une liaison croisée efficace des anticorps anti-Spike, ainsi qu’à l’émergence d’anticorps à la fois auto- et anti-idiotypes. Dans cet article, les inconvénients immunologiques de la forte efficacité de la traduction de l’ARNm associé aux vaccins contre la COVID-19 sont discutés ainsi que les arguments soutenant l’idée que la plupart d’entre eux peuvent être évités avec l’avènement des vaccins muqueux contre la COVID-19 de nouvelle génération. 19 vaccins.
Les vaccins à base d’ARNm contre la COVID-19 ont été distribués à de nombreuses personnes dans leurs versions originales et actuelles mises à jour. En outre, la technologie de l’ARNm constitue la base de vaccins expérimentaux supplémentaires ainsi que de la dernière génération d’immunothérapies anticancéreuses. Il est donc obligatoire d’identifier, de surveiller et d’analyser en profondeur les événements inattendus les plus pertinents que cette technologie peut produire chez l’homme, même si ceux-ci se produisent rarement.
Plusieurs caractéristiques distinguent les vaccins contre la COVID-19 à base d’ARNm des vaccins « traditionnels » basés sur des virus atténués/inactivés, des produits de sous-unités ou des produits recombinants, qui ont été si utiles pour l’élimination/le confinement de plusieurs maladies infectieuses. Premièrement, la formulation du vaccin comprend des nanoparticules lipidiques (LNP) complexées avec des molécules d’ARNm produites par le processus de transcription in vitro. Deuxièmement, l’immunogène ne fait pas partie de la formulation du vaccin, mais il devrait être synthétisé par les cellules internalisant les complexes ARNm/LNP. Cette preuve justifie la définition plus appropriée du promédicament (conçu comme une substance pharmacologiquement inactive qui est convertie dans le corps en un médicament pharmacologiquement actif) plutôt que du vaccin [ 1 ]. Troisièmement, l’immunogène (c’est-à-dire la protéine virale Spike) est synthétisé par les cellules cibles à des niveaux très élevés et persiste dans le temps [ 2 ]. Quatrièmement, l’immunogène reconnaît, se lie et active un récepteur cellulaire de signalisation répandu, à savoir l’enzyme de conversion de l’angiotensine (ACE)-2, et est stabilisé dans sa conformation de préfusion par deux mutations consécutives en proline aux positions d’acides aminés 986 et 987. qui n’ont pas d’impact négatif sur la liaison/activation de l’ACE-2. Par conséquent, l’abondance, la diffusion, la persistance, l’activité biologique et la stabilité de l’immunogène sont des points clés distinguant les vaccins COVID-19 à base d’ARNm.
Dans cet article, les conséquences les plus pertinentes de la surproduction de l’antigène Spike après la vaccination contre le COVID-19 à base d’ARNm et de la réponse immunitaire circulatoire plutôt puissante évoquée sont discutées. Une image complète de toutes les préoccupations possibles serait d’une utilité majeure pour le développement de vaccins plus sûrs et plus ciblés contre le SRAS-CoV-2 et d’autres agents infectieux aéroportés. Parmi ceux-ci, les vaccins muqueux méritent une certaine attention compte tenu de leur action au point d’entrée du virus et de l’absence d’effets systémiques indésirables.
2. Niveaux élevés et persistants de pic de circulation après la vaccination
Les complexes ARNm/nanoparticules lipidiques (LNP) peuvent pénétrer dans n’importe quel type de cellule. L’injection dans le muscle deltoïde favorise leur entrée dans les cellules musculaires ; cependant, l’inflammation modérée induite par certains composants lipidiques [ 3 ] peut attirer des cellules professionnelles présentatrices d’antigène (APC) vers le site d’injection. Les APC peuvent ingérer les LNP, subir une activation et migrer vers les ganglions lymphatiques [ 4 ]. De plus, des quantités non quantifiables de complexes ARNm/LNP injectés échappent à l’internalisation cellulaire au site d’injection, entrant ainsi en circulation. De manière cohérente, les études de biodistribution réalisées par un fabricant de vaccins à ARNm COVID-19 ont mis en évidence la diffusion potentielle des LNP injectés par voie intramusculaire dans presque tous les tissus [ 5 ].
L’ARNm et le vaccin Spike persistent dans l’organisme longtemps après la vaccination. Une étude réalisée sur des échantillons autooptiques de patients après vaccination contre le COVID-19 a démontré la persistance de l’ARNm du vaccin dans les ganglions lymphatiques axillaires bilatéraux jusqu’à 30 jours après la vaccination [ 6 ]. Notamment, l’ARNm du vaccin a également été trouvé dans les ventricules cardiaques jusqu’à 20 jours après l’injection, et sa présence était corrélée à des lésions myocardiques associées à un nombre anormalement élevé de macrophages myocardiques. Dans une autre étude, l’ARNm du vaccin a été trouvé jusqu’à 60 jours après la deuxième dose dans des biopsies des ganglions lymphatiques axillaires homolatéraux [ 2 ].
Une partie du Spike exprimé de manière intracellulaire reste exposée sur la membrane plasmique des cellules cibles sous sa forme trimérique, tandis qu’une fraction cohérente de celui-ci peut être excrétée et circuler. En conséquence, une médiane de 47 pg/mL de Spike libre a été mesurée dans le plasma des vaccinés 1 à 2 jours après l’injection, avec des pics de 174 pg/mL [ 2 ]. Ces niveaux de Spike dans le plasma semblent étonnamment élevés, allant, par exemple, aux concentrations de cytokines inflammatoires détectées chez les sujets présentant une inflammation systémique aiguë [ 7 ]. Cette preuve est particulièrement pertinente compte tenu de la forte affinité de Spike pour ACE-2, c’est-à-dire un récepteur cellulaire répandu impliqué dans plusieurs processus physiologiques clés.
3. ACE-2 : Résumé des fonctions, de la distribution et de la signalisation lors de la liaison de pointes
ACE-2 est une protéine transmembranaire de type I longue de 805 acides aminés avec une région N-terminale extracellulaire glycosylée contenant le domaine carboxypeptidase dont la fonction consiste à éliminer les acides aminés uniques de l’extrémité C-terminale de ses substrats. ACE-2 est un régulateur clé du système rénine-angiotensine-aldostérone, qui contrôle la pression artérielle. Il catalyse la conversion de l’angiotensine I, un décapeptide, en angiotensine 1 à 9, qui peut être convertie en peptides d’angiotensine vasodilatateurs plus petits (par exemple, angiotensine 1 à 7) par l’ECA dans les poumons. L’ACE-2 se lie également à l’angiotensine II, c’est-à-dire un octapeptide généré par le clivage de l’angiotensine I piloté par l’ACE, pour produire l’angiotensine vasodilatatrice 1-7. ACE-2 est également impliqué dans la production de bradykinines, c’est-à-dire un groupe de peptides ayant de puissants effets vasodilatateurs [ 8 ].
ACE-2 est exprimé par une grande variété de cellules, notamment les entérocytes, les cardiomyocytes, les tubules rénaux, le système vasculaire et les cellules canalaires. À l’inverse, l’expression de l’ACE-2 dans les tissus respiratoires est limitée à un petit nombre de types de cellules spécialisées, c’est-à-dire les cellules alvéolaires de type II et les macrophages alvéolaires [ 9 ].
L’interaction entre l’ACE-2 et l’angiotensine II induit diverses voies de signalisation conduisant finalement à la libération de plusieurs cytokines, dont l’IL-6, le TNF-α et le TGF-β [ 10 ]. Notamment, les effets de l’interaction de l’ACE-2 avec Spike récapitulent ceux décrits pour sa liaison avec ses ligands naturels [ 11 ]. En particulier, dans les cellules endothéliales vasculaires, Spike naturel génère un bloc des fonctions mitochondriales [ 12 ]; pendant ce temps, la commutation de la signalisation dépendante de l’intégrine ⍺5β1 conduit à la translocation nucléaire de NF-κB. Ces événements induisent finalement l’expression de VCAM-1, ICAM-1, de facteurs de coagulation et la libération de cytokines inflammatoires TNFα, IL-1β et IL-6 [ 13 ]. Des mécanismes d’activation similaires ont été rapportés pour les macrophages et les cellules dendritiques [ 14 , 15 ]. Il est important de noter que Spike naturel induit dans les cellules épithéliales et endothéliales la libération de cytokine pléiotrope TGF-β [ 16 ].
4. L’axe SARS-CoV-2 Spike/ACE-2/TGF-β dans la surveillance immunitaire antitumorale et la transition épithéliale à mésenchymateuse
La liaison de Spike avec ACE-2 produit de profondes altérations de la signalisation intracellulaire avec l’activation de facteurs de transcription et la libération de plusieurs facteurs solubles. En particulier, il a été constaté que les cellules endothéliales vasculaires humaines traitées avec Spike libèrent à la fois du TGF-β1 et du TGF-β2 [ 17 ], ce qui est cohérent avec les précédentes preuves « in vivo » suggérant un rôle clé du TGF-β dans la pathogenèse du COVID-19 [ 18 , 19 ].
Le TGF-β, avec ses trois isoformes, c’est-à-dire -β1 à -β3, est un régulateur clé de la réponse immunitaire adaptative [ 20 ], agissant, par exemple, comme un inhibiteur de l’activité de présentation d’antigène dans les cellules dendritiques (DC) grâce à la régulation négative des molécules du complexe majeur d’histocompatibilité (CMH) [ 21 , 22 ] ( Figure 1 ). Il réduit également l’expression de l’IL-12 et des molécules co-stimulatrices telles que CD40 dans les macrophages et CD80, CD83 et CD86 dans les CD, dans le cadre des mécanismes de régulation de l’activation des cellules immunitaires médiées par APC [ 23 , 24 ].
Graphique 1. Effets spectateurs de la liaison Spike/ACE-2. La protéine libre SARS-CoV-2 Spike se lie aux cellules exprimant l’ACE-2, induisant ainsi une signalisation intracellulaire, conduisant à la libération de facteurs solubles. Parmi ceux-ci, le TGF-β est connu pour réguler négativement l’activité de présentation de l’antigène dans les APC via une régulation négative du CMH de classe I/II. Le TGF-β est également un moteur majeur de la transition épithéliale-mésenchymateuse qui est à la base du développement des tumeurs solides et des métastases.
Le TGF-β peut également interférer avec les mécanismes de surveillance immunitaire contrôlant la croissance des cellules tumorales. Par exemple, le TGF-β peut induire la polarisation des macrophages de M1 (marquée par la libération de cytokines inflammatoires telles que l’IL-1β, l’IFN-γ, le TNF-α, l’IL-12 et l’IL-18) vers les macrophages M2, sécrétant cytokines anti-inflammatoires comme l’IL-1ra et l’IL-10, et caractérisées par de multiples propriétés immunosuppressives du microenvironnement tumoral [ 25 ]. D’autre part, le TGF-β est un moteur majeur de la transition épithéliale-mésenchymateuse (EMT) [ 26 ], qui est à la base du développement des tumeurs solides et des métastases. Dans ce scénario, les résultats cohérents des travaux expérimentaux de deux groupes de recherche ont soulevé l’hypothèse selon laquelle Spike naturel peut contribuer à l’EMT ( Figure 1 ). En détail, Lai et ses collègues ont fourni la preuve que la signalisation liée au TGF-β fait partie du mécanisme sous-jacent à l’acquisition d’un phénotype de type mésenchymateux de cellules cancéreuses du sein humaines exprimant Spike. Plus important encore, ils ont démontré que le nombre de métastases pulmonaires chez les souris inoculées avec des cellules cancéreuses du sein 4T1 exprimant Spike augmentait par rapport à celui induit par les cellules parentales. 27 , 28 ]. Ciszewski et ses collègues ont observé que le traitement avec Spike recombinant de type sauvage des cellules endothéliales humaines HUVEC et HMEC-1 induit la libération de TGF-β associée à la trans-différenciation cellulaire. En étudiant le mécanisme d’action sous-jacent, ils ont prouvé l’implication de l’axe ACE-2/TGF-β/MRTF (facteur de transcription lié à la myocarde)-β dans l’EMT observé. Enfin, la contribution du TGF-β dans l’EMT lié à Spike a été en outre corroborée par la démonstration que les cellules endothéliales humaines traitées par Spike n’ont pas réussi à se trans-différencier en présence d’anticorps anti-TGF-β [ 17 ].
Les résultats de ces études posent la question de savoir si Spike peut contribuer à l’EMT chez l’homme. Même si aucune donnée clinique décrivant les événements associés à ces réponses immunitaires pathologiques n’est disponible jusqu’à présent, les implications potentielles en termes de sécurité des vaccins contre la COVID-19 semblent également se manifester compte tenu des preuves selon lesquelles les ARNm/LNP peuvent pénétrer dans n’importe quel type de cellule. Par exemple, l’entrée malheureuse de complexes ARNm/LNP dans des cellules tumorales déjà émergées peut reproduire les conditions décrites par Lai et ses collègues, représentant ainsi un risque en termes de formation de métastases. D’un autre côté, des effets pathogénétiques de spectateur peuvent être induits par la production locale de fortes concentrations de Spike par des cellules normales ciblées par les ARNm/LNP et situées à proximité des cellules tumorales, comme décrit par Ciszewski et coll. Pour ces raisons, étendre les études à des systèmes cellulaires supplémentaires ainsi qu’à des modèles « in vivo » appropriés apparaît obligatoire compte tenu de la possibilité que des complexes ARNm/LNP circulent dans l’organisme après la vaccination.
5. Immunité non spécifique induite par le vaccin à ARNm COVID-19 : liaison croisée d’anticorps, autoanticorps, anticorps anti-idiotypes et changement de cadre ribosomal
Les niveaux élevés de vaccin Spike produits après l’injection sont associés à une réponse immunitaire circulatoire extraordinairement puissante, avec la production de titres élevés d’anticorps anti-Spike. D’une part, ce résultat est considéré comme un avantage en termes de protection antivirale ; d’un autre côté, cependant, une immunogénicité aussi puissante peut être associée à des effets indésirables pertinents apparaissant généralement en présence de stimuli antigéniques à la fois élevés et persistants. Ceux-ci incluent la liaison substantielle des anticorps anti-Spike réagissant de manière croisée avec les antigènes du « soi » avec l’induction de processus non physiologiques/pathogénétiques, l’émergence d’auto-anticorps et la génération d’anticorps anti-idiotypes. Ces événements ont été corrélés à l’émergence chez les vaccinées de pathologies comme la thrombocytopénie, la myocardite, divers troubles du cycle menstruel, la réémergence d’infections latentes et le syndrome vaccinal post-COVID (PCVS).
Les anticorps à réaction croisée se lient à des cibles hétérologues via le mécanisme du mimétisme moléculaire. Très probablement, des effets pathogénétiques peuvent se produire lorsque des quantités suffisantes d’entre eux se lient à des cibles moléculaires non spécifiques agissant dans des processus biologiques pertinents. Grâce à une analyse informatique du mimétisme moléculaire entre Spike et des épitopes humains connus, il a été rapporté que Spike partage des motifs linéaires immunogènes avec, entre autres, la thrombopoïétine (TQPLL) et la tropomyosine alpha-3 (ELDKY) [ 29 ]. Ces résultats semblent pertinents puisque le premier est un facteur de croissance clé nécessaire à la différenciation mégacaryocytaire et à la production de plaquettes, et le second est un composant structurel des cardiomyocytes. Dans une autre étude, il a été rapporté que Spike partage 41 déterminants immunitaires minimaux avec 27 protéines humaines spécifiques au système reproducteur féminin liées à l’ovogenèse, à la réceptivité utérine, à la décidualisation et à la placentation [ 30 ].
Des études cliniques ont fourni la preuve que l’injection de vaccins à ARNm contre la COVID-19 peut être associée à la production d’auto-anticorps, c’est-à-dire d’anticorps non anti-Spike reconnaissant les auto-antigènes, comme conséquence possible d’une dérégulation immunitaire générale. Par exemple, Xu et ses collègues [ 31 ] ont trouvé des anticorps neutralisants anti-interféron de type I chez 10 % des individus vaccinés en bonne santé, bien qu’avec une taille d’échantillon limitée. Dans une autre étude, 18 % des patients développant un PCVS produisent des auto-anticorps contre les sous-unités des neurofilaments [ 32 ]. Même si, dans certains cas, les auto-anticorps peuvent représenter des spectateurs innocents, il est encore difficile de savoir si la vaccination réactive l’auto-immunité latente préexistante ou induit la génération « de novo » d’auto-anticorps.
Le mimétisme moléculaire est également à la base des effets des anticorps anti-idiotypes ( Figure 2 ).
Graphique 2. Génération d’anticorps anti-idiotypes après la vaccination contre le COVID-19. Le système immunitaire peut générer des anticorps contre les séquences d’anticorps anti-Spike reconnaissant le domaine Spike liant le récepteur ACE-2 (domaine de liaison au récepteur, RBD). Grâce à un mécanisme de mimétisme moléculaire, ces anticorps (anticorps anti-idiotypes) peuvent se lier à l’ACE-2 tout comme le Spike immunogène.
Dans le cas où l’immunogène est un antigène se liant à un partenaire moléculaire, le système immunitaire peut réagir contre les séquences au sein des anticorps anti-antigènes induits qui reconnaissent la région de l’antigène qui se lie à son partenaire, par exemple dans le cas de Spike, le domaine de liaison au récepteur (RBD). Dans des conditions physiologiques, ce mécanisme contribue au contrôle de la production d’anticorps spécifiques de l’antigène. Cependant, en présence de quantités excessives d’anticorps spécifiques de l’antigène, comme dans le cas de la vaccination anti-COVID-19 à base d’ARNm, l’hyperproduction d’anticorps anti-idiotype qui en résulte peut conduire à des effets imitant ceux induits par la liaison de Spike avec ACE-2 [ 33 ]. Bellucci et ses collègues ont récemment démontré les effets secondaires associés à la production d’anticorps anti-idiotype se liant à l’ACE-2. En particulier, ils ont signalé des complications cliniques neurologiques, notamment une radiculite, une myélite et un syndrome de Guillain-Barré, chez des sujets infectés et non infectés par le SRAS-CoV-2, ayant reçu une injection de vaccins contre la COVID-19 à base d’ARNm et développant des auto-anticorps anti-ACE-2. 34 ]. Malheureusement, les autoanticorps et les anticorps anti-idiotypes devraient persister au-delà de la durée de la réponse immunitaire anti-Spike.
La découverte récente selon laquelle l’incorporation de N1-méthyl-pseudouridine à la place du résidu naturel d’uridine dans le squelette de l’ARNm associé au vaccin peut induire un décalage de cadre ribosomal +1 a ajouté une autre couche de complexité en termes de réponse immunitaire induite par le vaccin. Il a été estimé qu’environ 8 % du total des produits traduits représentent des protéines inconnues immunogènes chez l’homme [ 35 ]. Le potentiel auto-immun des produits protéiques aberrants ainsi générés représente un point supplémentaire qui doit être étudié plus en profondeur.
6. Vaccins muqueux : une alternative potentiellement exempte d’effets secondaires systémiques
Le champ de bataille du COVID-19 est le système respiratoire, où le vaccin idéal contre le COVID-19 devrait développer sa force immunologique et antivirale la plus efficace. Les données cliniques rapportées concernant les vaccins COVID-19 actuels à base d’ARNm soutiennent l’idée selon laquelle la forte réponse immunitaire circulatoire est associée à une immunité antivirale dans les zones respiratoires qui est trop limitée [ 36 ].
De la même manière que ce qui a été démontré avec les infections naturelles [ 37 ], les vaccins muqueux ont le potentiel de susciter des réponses immunitaires efficaces dans le compartiment respiratoire grâce à l’induction à la fois d’IgA dimères/sécrétoires neutralisantes dans le district oronasopharyngé [ 38 ] et de CD8 de mémoire résidente antivirale. + Lymphocytes T dans les voies respiratoires inférieures [ 39 ]. Ainsi, des vaccins muqueux efficaces ont l’avantage incomparable de bloquer la chaîne de transmission du SRAS-CoV-2 ainsi que d’autres virus aéroportés.
À l’heure actuelle, deux vaccins muqueux COVID-19 ont été approuvés et d’autres sont en expérimentation clinique [ 40 ]. Il convient de noter qu’en aucun cas ces vaccins ne devraient induire de réponses immunitaires systémiques robustes comme celles observées avec les vaccins actuels contre la COVID-19. Cependant, une immunisation systémique sous-optimale/faible ne doit pas être considérée comme un inconvénient fonctionnellement pertinent compte tenu du compartimentage du système immunitaire respiratoire [ 41 ], qui limite l’accès des IgG neutralisantes et des cellules immunitaires antivirales du district circulatoire. À l’inverse, cela représente un avantage en termes de forte réduction/absence d’effets systémiques immunologiques induits par les vaccins COVID-19 à base d’ARNm injectés par voie parentérale, y compris la production d’anticorps anti-idiotypiques circulatoires indésirables.
7. Conclusions
Plusieurs éléments de preuve expérimentaux soutiennent l’idée selon laquelle la protéine Spike est produite en abondance et persiste après la vaccination par ARNm COVID-19. Cependant, les vaccins actuels contre la COVID-19 à base d’ARNm reconnaissent une série de limitations pertinentes, notamment le déclin rapide de la réponse immunitaire, l’incapacité de développer une réponse immunitaire efficace au point d’entrée du virus et l’efficacité réduite des formulations mises à jour en raison de la phénomène de péché antigénique originel [ 42 , 43 ]. D’un autre côté, une traduction puissante de l’ARNm associée à une surproduction de Spike peut conduire à une dérégulation de la signalisation ACE-2 et de la production de cytokines, à une réaction croisée des anticorps contre des cibles moléculaires non spécifiques, à l’émersion d’anticorps auto- et anti-idiotypes et à des réponses immunitaires. d’importance incertaine contre des produits inconnus. De plus, les cytokines produites après la liaison Spike/ACE-2 peuvent influencer défavorablement le devenir des tumeurs encore « dormantes » et des pathologies auto-immunes préexistantes ainsi que des inflammations chroniques. Pour ces raisons, l’indication actuelle des vaccins à ARNm contre la COVID-19 pour la population « fragile » doit être soigneusement réévaluée à la lumière de la typologie de chaque fragilité spécifique.
Malgré l’efficacité remarquable de la production d’antigènes, des tentatives pour améliorer les performances de ces vaccins COVID-19 à base d’ARNm ont été faites dans le sens de renforcer la production de Spike grâce à l’injection parentérale de vecteurs à base d’ARNm auto-réplicatifs [ 44 ]. Notamment, le ministère japonais de la Santé a récemment approuvé un essai clinique pour tester la sécurité et l’efficacité d’un vaccin COVID-19 basé sur cette technologie [ 45 ]. Ce choix semble véritablement discutable étant donné les lacunes décrites ci-dessus induites par la production excessive et la persistance de Spike circulatoire dictées par les vaccins COVID-19 actuels à base d’ARNm. Dans ce scénario, l’augmentation des quantités et de la persistance de Spike en circulation devrait exacerber les effets secondaires à la fois cellulaires et immunologiques, mais sans agir sur la limitation fonctionnelle la plus importante de ces vaccins, à savoir leur incapacité à susciter une immunité neutralisante dans les voies respiratoires. à la compartimentation immunitaire du système respiratoire. De plus, un stimulus immunogène trop puissant et persistant est connu pour induire une tolérance immunologique, comme cela a également été rapporté dans quelques articles sur les vaccins actuels contre le COVID-19. 46 , 47 ].
À l’inverse, une voie plus plausible à suivre est représentée par le développement de vaccins muqueux efficaces [ 48 ] compte tenu de leur capacité à agir au point d’entrée du virus et à éviter la plupart des effets secondaires systémiques observés dans les vaccins à ARNm COVID-19 injectés par voie intramusculaire. .
La technologie basée sur l’ARNm suscite actuellement l’intérêt de nombreux scientifiques du monde entier. Dans le cas des vaccins contre la COVID-19, il semble plus que raisonnable qu’une charge d’enquête adéquate soit concentrée sur l’identification et l’analyse d’événements inattendus, dans le but évident de rendre cette stratégie prophylactique plus sûre et adaptée à une utilisation dans un grand nombre de personnes. de personnes en bonne santé.
Financement
Ce travail a été soutenu par la subvention RiPrEI, no. Rip 001, du ministère de la Santé, Rome, Italie.
Déclaration du comité d’examen institutionnel
Sans objet.
Déclaration de consentement éclairé
Sans objet.
Déclaration de disponibilité des données
Aucune nouvelle donnée n’a été créée.
Remerciements
Je remercie Rosangela Duranti et Federica Magnani pour leur assistance en matière de secrétariat.
Conflits d’intérêts
L’auteur ne déclare aucun conflit d’intérêts.
Références
Cosentino, M. ; Marino, F. Comprendre la pharmacologie des vaccins à ARNm contre la COVID-19 : jouer aux dés avec le Spike ? Int. J. Mol. Sci. 2022 , 23 , 10881. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Röltgen, K. ; Nielsen, SCA; Silva, O. ; Younes, SF ; Zaslavski, M. ; Costales, C. ; Yang, F. ; Wirz, OF; Solis, D. ; Oh, RA ; et coll. Empreinte immunitaire, étendue de la reconnaissance des variantes et réponse du centre germinal dans l’infection et la vaccination humaines par le SRAS-CoV-2. Cellule 2022 , 185 , 1025-1040.e14. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Moghimi, SM; Simberg, D. Préoccupations pro-inflammatoires liées aux nanoparticules lipidiques. Mol. Là. 2022 , 30 , 2109-2110. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Lindsay, KE ; Bhosle, SM; Zurla, C. ; Beyersdorf, J. ; Rogers, KA ; Vanover, D. ; Xiao, P. ; Araínga, M. ; Shirreff, LM; Pitard, B. ; et coll. Visualisation des premiers événements de l’administration de vaccins à ARNm chez des primates non humains via PET-CT et imagerie proche infrarouge. Nat. Bioméde. Ing. 2019 , 3 , 371-380. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Krauson, AJ; Casimero, CVF ; Siddiquee, Z. ; Stone, JR Durée de la persistance du vaccin à ARNm du SRAS-CoV-2 et facteurs associés à l’atteinte cardiaque chez les patients récemment vaccinés. npj Vaccines 2023 , 8 , 141. [ Google Scholar ] [ CrossRef ]
Kuba, K. ; Yamaguchi, T. ; Penninger, JM Enzyme de conversion de l’angiotensine 2 (ACE2) dans la pathogenèse du SDRA dans le COVID-19. Devant. Immunol. 2021 , 12 , 732690. [ Google Scholar ] [ CrossRef ]
Hikmet, F. ; Méar, L. ; Edvinsson, Å.; Micke, P. ; Uhlén, M. ; Lindskog, C. Le profil d’expression protéique de l’ACE2 dans les tissus humains. Mol. Système. Biol. 2020 , 16 , e9610. [ Google Scholar ] [ CrossRef ]
Santos, RAS ; Sampaio, WO; Alzamora, Californie ; Motta-Santos, D. ; Alénine, N. ; Bader, M. ; Campagnole-Santos, MJ L’axe ACE2/Angiotensine-(1-7)/MAS du système rénine-angiotensine : Focus sur l’angiotensine-(1-7). Physiol. Rév.2018 98 , , 505-553. [ Google Scholar ] [ CrossRef ]
Ni, W. ; Yang, X. ; Yang, D. ; Bao, J. ; Li, R. ; Xiao, Y. ; Hou, C. ; Wang, H. ; Liu, J. ; Yang, D. ; et coll. Rôle de l’enzyme de conversion de l’angiotensine 2 (ACE2) dans le COVID-19. Critique. Soins 2020 , 24 , 422. [ Google Scholar ] [ CrossRef ]
Lei, Y. ; Zhang, J. ; Schiavon, CR; Lui, M. ; Chen, L. ; Shen, H. ; Zhang, Y. ; Yin, Q. ; Cho, Y. ; Andrade, L. ; et coll. La protéine Spike du SRAS-CoV-2 altère la fonction endothéliale via une régulation négative de l’ACE 2. Circ. Rien. 2021 , 128 , 1323-1326. [ Google Scholar ] [ CrossRef [ PubMed ]
Robles, JP; Zamora, M. ; Adan-Castro, E. ; Siqueiros-Marquez, L. ; de l’Escalier, GM ; Clapp, C. La protéine Spike du SRAS-CoV-2 induit une inflammation endothéliale via la signalisation de l’intégrine A5β1 et NF-ΚB. J. Biol. Chimique. 2022 , 298 , 101695. [ Google Scholar ] [ CrossRef [ PubMed ]
Barhoumi, T. ; Alghanem, B. ; Shaiba, H. ; Mansour, FA; Alamri, HS; Akiel, MA ; Alroqi, F. ; Boudjelal, M. Apoptose induite par les protéines de pointe du coronavirus SARS-CoV-2, réponses au stress inflammatoire et oxydatif dans les macrophages de type THP-1 : rôle potentiel de l’inhibiteur de l’enzyme de conversion de l’angiotensine (périndopril). Devant. Immunol. 2021 , 12 , 728896. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Winheim, E. ; Rinke, L. ; Lutz, K. ; Reischer, A. ; Leutbecher, A. ; Wolfram, L. ; Rausch, L. ; Kranich, J. ; Wratil, PR ; Huber, JE ; et coll. Fonction altérée et régénération retardée des cellules dendritiques dans le COVID-19. Pathog PLoS. 2021 , 17 , e1009742. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Gracie, IP ; Lai, LYS ; Newsome, signalisation cellulaire TP par la protéine Spike du SRAS-CoV-2. Microbiol. Aust. 2024 , 45 , 13-17. [ Google Scholar ] [ CrossRef ]
Ciszewski, WM; Woźniak, LA ; Sobierajska, K. Divers rôles des protéines de pointe et de nucléocapside du SRAS-CoV-2 dans la stimulation de l’EndMT via l’axe TGF-β-MRTF inhibé par l’aspirine. Cellule commune. Signal 2024 , 22 , 296. [ Google Scholar ] [ CrossRef ]
Biering, SB ; Gomes de Sousa, FT; Tjang, LV ; Pahmeier, F. ; Zhu, C. ; Ruan, R. ; Blanc, SF; Patel, TS ; Worthington, CM ; Glasner, DR ; et coll. Le pic du SRAS-CoV-2 déclenche un dysfonctionnement de la barrière et une fuite vasculaire via les intégrines et la signalisation TGF-β. Nat. Comm. 2022 , 13 , 7630. [ Google Scholar ] [ CrossRef ]
Carvacho, I. ; Piesche, M. Intégrines de liaison au RGD et TGF-β dans les infections par le SRAS-CoV-2 : de nouvelles cibles pour traiter les patients atteints de COVID-19 ? Clin. Trad. Immunol. 2021 , 10 , e1240. [ Google Scholar ] [ CrossRef ]
Deng, Z. ; Fan, T. ; Xiao, C. ; Tian, H. ; Zheng, Y. ; Li, C. ; Lui, J. Signalisation TGF-β dans la santé, la maladie et la thérapeutique. Transduction de signal. Cible. Là. 2024 , 9 , 61. [ Google Scholar ] [ CrossRef ]
Batlle, E. ; Massagué, J. Transformation de la signalisation du facteur de croissance-β dans l’immunité et le cancer. Immunité 2019 , 50 , 924-940. [ Google Scholar ] CrossRef [
Nandan, D. ; Reiner, NE TGF-Beta atténue le transactivateur de classe II et révèle une voie accessoire de l’action IFN-Gamma. J. Immunol. 1997 , 158 , 1095-1101. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Geissmann, F. ; Révy, P. ; Regnault, A. ; Lepelletier, Y. ; Dy, M. ; Brousse, N. ; Amigorena, S. ; Hermine, O. ; Durandy, A. TGF-Beta 1 empêche la maturation non apparentée des cellules dendritiques de Langerhans humaines. J. Immunol. 1999 , 162 , 4567-4575. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Takeuchi, M. ; Alard, P. ; Streilein, JW TGF-Beta favorise la déviation immunitaire en modifiant les signaux accessoires des cellules présentatrices d’antigène. J. Immunol. 1998 , 160 , 1589-1597. [ Google Scholar ] [ CrossRef ]
Mantovani, A. ; Sozzani, S. ; Locati, M. ; Allavena, P. ; Sica, A. Polarisation des macrophages : macrophages associés aux tumeurs comme paradigme pour les phagocytes mononucléaires M2 polarisés. Tendances Immunol. 2002 , 23 , 549-555. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Angioni, R. ; Sánchez-Rodríguez, R. ; Viole, A. ; Molon, B. TGF-β dans le cancer : moteur métabolique de la diaphonie tolérogène dans le microenvironnement tumoral. Cancers 2021 , 13 , 401. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Lai, Y.-J.; Chao, CH ; Liao, CC-C.; Lee, TA ; Hsu, J.-M. ; Chou, WC; Wang, J. ; Huang, HC ; Chang, S.-J. ; Lin, Y.-L.; et coll. La transition épithéliale-mésenchymateuse induite par le SRAS-CoV-2 a nécessité une régulation transcriptionnelle positive de l’escargot. Suis. J. Cancer Rés. 2021 , 11 , 2278-2290. [ Google Scholar ]
Huang, HC ; Liao, CC-C.; Wang, S.-H. ; Lee, I.-J. ; Lee, TA ; Hsu, J.-M. ; Kuo, C.-T.; Wang, J. ; Hsieh, WC; Chang, S.-J. ; et coll. Le pic hyperglycosylé de la variante Gamma du SRAS-CoV-2 induit des métastases du cancer du sein. Suis. J. Cancer Rés. 2021 , 11 , 4994-5005. [ Google Scholar ]
Nunez-Castilla, J. ; Stebliankine, V. ; Baral, P. ; Balbin, Californie ; Sobhan, M. ; Cickovski, T. ; Mondal, AM; Narasimhan, G. ; Chapagain, P. ; Mathée, K. ; et coll. Auto-immunité potentielle résultant du mimétisme moléculaire entre le pic du SRAS-CoV-2 et les protéines humaines. Virus 2022 , 14 , 1415. [ Google Scholar ] [ CrossRef ]
Dotan, A. ; Kanduc, D. ; Müller, S. ; Makatsariya, A. ; Shoenfeld, Y. Mimétisme moléculaire entre le SRAS-CoV-2 et le système reproducteur féminin. Suis. J. Reproduction. Immunol. 2021 , 86 , e13494. [ Google Scholar ] [ CrossRef ]
Xu, W. ; Wen, X. ; Cong, X. ; Jiang, W. Le vaccin à ARNm COVID-19, mais pas un vaccin à base de vecteur viral, favorise la production neutralisante d’autoanticorps anti-interféron de type I dans un petit groupe d’individus en bonne santé. J.Méd. Virol. 2023 , 95 , e29137. [ Google Scholar ] [ CrossRef ]
Murphy, WJ; Longo, DL Un rôle possible des anticorps anti-idiotypes dans l’infection et la vaccination par le SRAS-CoV-2. N. Engl. J.Méd. 2022 , 386 , 394-396. [ Google Scholar ] [ CrossRef ]
Arlt, FA; Breuer, A. ; Trampenau, E. ; Boesl, F. ; Kirchner, M. ; Mertins, P. ; Sánchez-Sendín, E. ; Nasouti, M. ; Mayrhofer, M. ; Blüthner, M. ; et coll. Prévalence sérique élevée des anticorps IgG autoréactifs contre les structures nerveuses périphériques chez les patients atteints du syndrome neurologique de vaccination post-COVID-19. Devant. Immunol. 2024 , 15 , 1404800. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Bellucci, M. ; Bozzano, FM; Castellano, C. ; Pesce, G. ; Béronio, A. ; Farshchi, AH; Limongelli, A. ; Uccelli, A. ; Benedetti, L. ; De Maria, A. L’infection post-SRAS-CoV-2 et les complications neurologiques liées au vaccin partagent des caractéristiques cliniques et la même positivité aux anticorps anti-ACE2. Devant. Immunol. 2024 , 15 , 1398028. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Mulroney, TE; Poyry, T. ; Yam-Puc, JC; Rouille, M. ; Harvey, RF; Kalmar, L. ; Horner, E. ; Booth, L. ; Ferreira, AP; Stoneley, M. ; et coll. La N1-méthylpseudouridylation de l’ARNm provoque un décalage du cadre ribosomal +1. Nature 2024 , 625 , 189-194. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Tang, J. ; Zeng, C. ; Cox, TM; Li, C. ; Fils, YM; Cheon, EST ; Wu, Y. ; Behl, S. ; Taylor, JJ; Chakaraborty, R. ; et coll. Immunité des muqueuses respiratoires contre le SRAS-CoV-2 après vaccination à ARNm. Sci. Immunol. 2022 , 7 , eadd4853. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Mitsi, E. ; Diniz, Missouri ; Reiné, J. ; Collins, AM; Robinson, RE; Hyder-Wright, A. ; Farrar, M. ; Liatsikos, K. ; Hamilton, J. ; Onyema, O. ; et coll. Mémoire immunitaire des muqueuses respiratoires contre le SRAS-CoV-2 après infection et vaccination. Nat. Commun. 2023 , 14 , 6815. [ Google Scholar ] [ CrossRef ]
Soleil, B. ; Wang, Q. ; Zheng, P. ; Niu, X. ; Feng, Y. ; Guan, W. ; Chen, S. ; Li, J. ; Cui, T. ; Deng, Y. ; et coll. Un vaccin contre le SRAS-CoV-2 à vecteur adénovirus administré par voie intranasale induit des IgA sécrétoires muqueuses robustes. JCI Insight 2024 , 9 , e180784. [ Google Scholar ] CrossRef [
Maman, B. ; Tao, M. ; Li, Z. ; Zheng, Q. ; Wu, H. ; Chen, P. Vaccins muqueux contre les maladies virales : état et perspectives. Virologie 2024 , 593 , 110026. [ Google Scholar ] [ CrossRef ]
Rathore, APS ; St. John, AL Promesses et défis des vaccins muqueux contre la COVID-19. Vaccin 2023 , 41 , 4042-4049. [ Google Scholar ] [ CrossRef ]
Allie, SR ; Bradley, JE; Mudunuru, U. ; Schultz, MD; Graf, BA; Lund, FE ; Randall, TD L’établissement de cellules mémoire B résidentes dans les poumons nécessite une rencontre locale avec un antigène. Nat. Immunol. 2019 , 20 , 97-108. [ Google Scholar ] [ CrossRef ]
Planas, D. ; Bruel, T. ; Grzelak, L. ; Guivel-Benhassine, F. ; Staropoli, I. ; Porrot, F. ; Planchais, C. ; Buchrieser, J. ; Rajah, MM ; Évêque, E. ; et coll. Sensibilité des variantes infectieuses du SRAS-CoV-2 B.1.1.7 et B.1.351 aux anticorps neutralisants. Nat. Méd. 2021 , 27 , 917-924. [ Google Scholar ] [ CrossRef ]
Tang, Y. ; Boribong, BP; Swank, ZN ; Démokritou, M. ; Luban, MAF; Fasano, A. ; Du, M. ; Loup, RL ; Griffiths, J. ; Shultz, J. ; et coll. Les vaccins à ARNm contre la COVID-19 induisent des niveaux élevés d’IgG mais des quantités limitées d’IgA dans l’oronasopharynx des jeunes enfants. J. Infecter. Dis. 2024 , jiae450. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Oda, Y. ; Kumagai, Y. ; Kanaï, M. ; Iwama, Y. ; Okura, moi; Minamida, T. ; Yagi, Y. ; Kurosawa, T. ; Plus vert, B. ; Zhang, Y. ; et coll. Immunogénicité et innocuité d’une dose de rappel d’un vaccin auto-amplificateur à ARN contre la COVID-19 (ARCT-154) par rapport au vaccin à ARNm BNT162b2 contre la COVID-19 : un essai de non-infériorité en double aveugle, multicentrique, randomisé et contrôlé. Lancet Infecter. Dis. 2024 , 24 , 351-360. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Dolgin, E. Le vaccin à ARN autocopiant remporte la première approbation complète : quelle est la prochaine étape ? Nature 2023 , 624 , 236-237. [ Google Scholar ] [ CrossRef ] [ PubMed ]
Uversky, VN ; Redwan, EM; Makis, W. ; Rubio-Casillas, A. Les anticorps IgG4 induits par une vaccination répétée peuvent générer une tolérance immunitaire à la protéine Spike du SRAS-CoV-2. Vaccins 2023 , 11 , 991. [ Google Scholar ] [ CrossRef ]
Irrgang, P. ; Gerling, J. ; Kocher, K. ; Lapuente, D. ; Steininger, P. ; Habenicht, K. ; Wytopil, M. ; Beileke, S. ; Schäfer, S. ; Zhong, J. ; et coll. Changement de classe vers des anticorps IgG4 non inflammatoires spécifiques aux pointes après une vaccination répétée à l’ARNm du SRAS-CoV-2. Sci. Immunol. 2023 , 8 , eade2798. [ Google Scholar ] [ CrossRef ]
Zhu, F. ; Huang, S. ; Liu, X. ; Chen, Q. ; Zhuang, C. ; Zhao, H. ; Han, J. ; Jaén, AM; Faites, TH; Peter, JG ; et coll. Sécurité et efficacité du vaccin intranasal contre le SRAS-CoV-2 dNS1-RBD : un essai de phase 3 multicentrique, randomisé, en double aveugle, contrôlé par placebo. Lancette Respir. Méd. 2023 , 11 , 1075-1088. [ Google Scholar ] [ CrossRef ]
Avis de non-responsabilité/Note de l’éditeur : Les déclarations, opinions et données contenues dans toutes les publications sont uniquement celles du ou des auteurs et contributeurs individuels et non de MDPI et/ou du ou des éditeurs. MDPI et/ou le(s) éditeur(s) déclinent toute responsabilité pour tout préjudice corporel ou matériel résultant des idées, méthodes, instructions ou produits mentionnés dans le contenu.
Nous utilisons des cookies pour optimiser notre site web et notre service.
Fonctionnel
Toujours activé
Le stockage ou l’accès technique est strictement nécessaire dans la finalité d’intérêt légitime de permettre l’utilisation d’un service spécifique explicitement demandé par l’abonné ou l’utilisateur, ou dans le seul but d’effectuer la transmission d’une communication sur un réseau de communications électroniques.
Préférences
Le stockage ou l’accès technique est nécessaire dans la finalité d’intérêt légitime de stocker des préférences qui ne sont pas demandées par l’abonné ou l’utilisateur.
Statistiques
Le stockage ou l’accès technique qui est utilisé exclusivement à des fins statistiques.Le stockage ou l’accès technique qui est utilisé exclusivement dans des finalités statistiques anonymes. En l’absence d’une assignation à comparaître, d’une conformité volontaire de la part de votre fournisseur d’accès à internet ou d’enregistrements supplémentaires provenant d’une tierce partie, les informations stockées ou extraites à cette seule fin ne peuvent généralement pas être utilisées pour vous identifier.
Marketing
Le stockage ou l’accès technique est nécessaire pour créer des profils d’utilisateurs afin d’envoyer des publicités, ou pour suivre l’utilisateur sur un site web ou sur plusieurs sites web ayant des finalités marketing similaires.